首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), and locomotor activity (LA) in conscious and unrestrained guinea pigs using a telemetry system. HR and/or LA in some guinea pigs clearly showed circadian rhythms, but in others there were no significant daily patterns; BT did not show significant daily rhythms. These results suggest that guinea pigs might have different individual characteristics of rhythmicity, and we should, therefore, be careful when using guinea pigs in chrono-biomedical research. We believe that the results of this study may be useful for future biomedical studies using guinea pigs.  相似文献   

2.
This study was investigated the roles of interleukin-1 (IL-1) on diurnal rhythms of heart rate (HR), locomotor activity (LA), and body temperature (BT). For this purpose, HR, LA, and BT were recorded from conscious and unrestrained IL-1 alpha/beta doubly deficient (KO) and normal C57BL/6J mice using a telemetry system. These parameters were continuously recorded from just after to 2 weeks after transmitter implantation, because we thought that the surgical stress-induced IL-1 might affect the biobehavioral activities of the animals. At 1 day after implantation, HR and LA in IL-1 alpha/beta KO mice were higher than those in C57BL/6J mice. While BT in IL-1 alpha/beta KO mice was lower than that in C57BL/6J mice. Moreover, diurnal rhythmicity in these parameters after implantation in IL-1 alpha/beta KO mice appeared earlier than in C57BL/6J mice. At 2 weeks after implantation, there were no significant differences in the light- and dark-phase values of each parameter between IL-1 alpha/beta KO and C57BL/6J mice, however, IL-1 alpha/beta KO mice showed clear ultradian rhythmicity. It is thought that a phenotypical difference in biobehavioral activities between IL-1 alpha/beta KO and C57BL/6J mice may reflect IL-1 induced febrile and behavioral responses. These results suggest that IL-1 may play important physiological and pathophysiological roles on biobehavioral activities.  相似文献   

3.
The effects of suprachiasmatic and control lesions on the circadian rhythms of locomotor activity and body temperature were studied in golden hamsters (Mesocricetus auratus) maintained in constant light as well as constant darkness. Large suprachiasmatic lesions, but not control lesions, eliminated circadian rhythmicity in locomotor activity as well as in body temperature. Analysis of the robustness of the rhythms of locomotor activity and body temperature in unlesioned and lesioned animals suggests that, because body temperature rhythmicity is more robust than locomotor rhythmicity, lesions that spare a small number of suprachiasmatic cells might abolish the latter but not the former. Our results do not support the hypothesis that the body temperature rhythm is controlled by a circadian pacemaker distinct from the main pacemaker located in the suprachiasmatic nuclei.  相似文献   

4.
5.
Circadian rhythms of body temperature, heart rate, and locomotor activity were observed in the unanesthetized and unrestrained Syrian hamsters, Djungarian hamsters and Chinese hamsters, and the differences in these biological characters among the three species of hamster were investigated. In each species, body temperature, heart rate, and locomotor activity in the dark period were higher than those in the light period. Heart rate of Chinese hamsters was higher than that of the others in both the light and dark periods. In addition, it was found that the body temperature of Djungarian hamsters decreased rapidly one time a day. These results show species differences in body temperature, heart rate and locomotor activity of Syrian, Djungarian and Chinese hamsters.  相似文献   

6.
Diurnal fluctuations of heart rate (HR), body temperature (BT) and locomotor activity (LA) in the unanaesthetized and unrestrained house musk shrew (Suncus murinus) were studied using a telemetry system. Six adult male shrews (Jic:SUN) weighing 60-70 g were used in the present study. They were housed under conditions of 24 C and a 12/12-hr light-dark cycle. HR, BT and LA were recorded over 10 days, following the post-implantation period (10 days or more) of the telemetric transmitter. A clear nocturnal rhythm of LA was shown, while intermittent and short-term LA were shown during the light period. The mean HR was 323.5 +/- 8.8 bpm in the light period and 354.3 +/- 5.2 bpm in the dark period, and the fluctuation of HR showed a nocturnal pattern. A nocturnal pattern was also observed in BT fluctuation, and all animals lowered their body temperature from 35-37 C to approximately 30 C or below, mostly during the light period. The fall of body temperature progressed over 2-3 hr, and then rose to the baseline temperature rapidly within approximately 30 min. While the body temperature fell, HR markedly decreased to approximately 100 bpm. These results suggest that the shrew has unique physiological properties in maintaining metabolic balance which are anticipated to be caused by the dramatic alteration of the autonomic nervous function.  相似文献   

7.
It has been suggested that the DGCR2 gene plays a role in the pathogenesis of 22q11.2 deletion syndrome. To analyze its function, we used our Dgcr2-knock-out/EGFP-knock-in mice (Dgcr2-KO mice). At 20-26 weeks of age, approximately 20% of Dgcr2-KO mice showed gait abnormalities with trembling and difficulty in balancing. Footprint test revealed awkward movements in Dgcr2-KO mice soon after they were placed on the floor. Once they started walking, their stride lengths were not different from wild-type mice. In short-term open field test, Dgcr2-KO mice travelled a significantly shorter distance and walked more slowly than wild-type mice during the initial 5 min after being placed in a new environment. In long-term open field test, Dgcr2-KO mice exhibited reduced cage activity compared to wild-type mice on the first day, but not on later days. Dgcr2-KO mice showed reduced latency to fall in the rotarod test, and the latency was not improved in the 3-day test. Histology revealed sparseness of cerebellar Purkinje cells in Dgcr2-KO mice. Our results suggest that Dgcr2 plays a role in motor control related to Purkinje cell function and that the deficiency of DGCR2 contributes at least to some of the symptoms of patients of 22q11.2 deletion syndrome.  相似文献   

8.
GABAB1-/- mice, which are devoid of functional GABAB receptors, consistently exhibit marked hyperlocomotion when exposed to a novel environment. Telemetry recordings now revealed that, in a familiar environment, GABAB1-/- mice display an altered pattern of circadian activity but no hyperlocomotion. This indicates that hyperlocomotion is only triggered when GABAB1-/- mice are aroused by novelty. In microdialysis experiments, GABAB1-/- mice exhibited a 2-fold increased extracellular level of dopamine in the striatum. Following D-amphetamine administration, GABAB1-/- mice released less dopamine than wild-type mice, indicative of a reduced cytoplasmic dopamine pool. The hyperdopaminergic state of GABAB1-/- mice is accompanied by molecular changes, including reduced levels of tyrosine hydroxylase mRNA, D1 receptor binding-sites and Ser40 phosphorylation of tyrosine hydroxylase. Tyrosine hydroxylase activity, tissue dopamine content and dopamine metabolism do not appear to be measurably altered. Pharmacological and electrophysiological experiments support that the hyperdopaminergic state of GABAB1-/- mice is not severe enough to inactivate dopamine D2 receptors and to disrupt D2-mediated feedback inhibition of tyrosine hydroxylase activity. The data support that loss of GABAB activity results in a sustained moderate hyperdopaminergic state, which is phenotypically revealed by contextual hyperlocomotor activity. Importantly, the presence of an inhibitory GABA tone on the dopaminergic system mediated by GABAB receptors provides an opportunity for therapeutic intervention.  相似文献   

9.
Thyroid hormone, acting through several nuclear hormone receptors, plays important roles in thermogenesis, lipogenesis and maturation of the neonatal brain. The receptor specificity for mediating these effects is largely unknown, and to determine this we developed mice lacking the thyroid hormone receptor TR alpha 1. The mice have an average heart rate 20% lower than that of control animals, both under normal conditions and after thyroid hormone stimulation. Electrocardiograms show that the mice also have prolonged QRS- and QTend-durations. The mice have a body temperature 0.5 degrees C lower than normal and exhibit a mild hypothyroidism, whereas their overall behavior and reproduction are normal. The results identify specific and important roles for TR alpha 1 in regulation of tightly controlled physiological functions, such as cardiac pacemaking, ventricular repolarisation and control of body temperature.  相似文献   

10.
The effects of vinorelbine (VRL) on the circadian rhythms in body temperature and locomotor activity were investigated in unrestrained B6D2F1 mice implanted with radio-telemetry transmitters. A single intravenous VRL dose (24 or 12 mg/kg) was given at 7 h after light onset (HALO), a time of high VRL toxicity, and resulted in transient suppression of temperature and activity circadian rhythms in mice kept in light-dark (LD) 12h:12h. Such suppression was dose-dependent. It occurred within 1-5 d after VRL dosing. Recovery of both rhythms was partially complete within 5 d following the high dose and within 2 or 3 d after the low dose and was not influenced by suppression of photoperiodic synchronization by housing in continuous darkness. Moreover, VRL induced a dose-dependent relative decrease in amplitude and phase shift of the temperature circadian rhythm. The mesor and amplitude of the activity rhythm were markedly reduced following the VRL administration. The relevance of VRL dosing time was studied in mice housed in LD 12h:12h. Vinorelbine was injected weekly (20 mg/kg/injection) for 3 wk at 6 or 18 HALO. Vinorelbine treatment ablated the rest-activity and temperature rhythms 3-6 d after each dose, with fewer alterations after VRL dosing at 18 HALO compared to 6 HALO, especially for the body temperature rhythm. There was at least partial recovery 1 wk after dosing, suggesting the weekly schedule of drug treatment is acceptable for therapeutic purposes. Our findings demonstrate that VRL can transiently, yet profoundly, alter circadian clock function. Vinorelbine-induced circadian dysfunction may contribute to the toxicokinetics of this and possibly other anticancer drugs.  相似文献   

11.
Some experimental procedures are associated with placement of animals in wire-bottom cages. The goal of this study was to evaluate stress-related physiological parameters (heart rate [HR], body temperature [BT], locomotor activity [LA], body weight [BW] and food consumption) in rats under two housing conditions, namely in wire-bottom cages and in bedding-bottom cages. Telemetry devices were surgically implanted in male Sprague-Dawley rats. HR, BT and LA were recorded at 5 min intervals. Analysis under each housing condition was performed from 16:00 to 08:00 h of the following day (4 h light, 12 h dark). During almost all of the light phase, the HR of rats housed in wire-bottom cages remained high (371 ± 35 bpm; mean ± SD; n = 6) and was significantly different from that of rats housed in bedding-bottom cages (340 ± 29 bpm; n = 6; P < 0.001; Student's t-test). In general, BT was similar under the two housing conditions. However, when rats were in wire-bottom cages, BT tended to fluctuate more widely during the dark phase. LA decreased when animals were housed in wire-bottom cages, in particular during the dark phase. Moreover, there was a significant difference with respect to the gain in BW: BW of rats housed in bedding-bottom cages increased 12 ± 2 g, whereas that of rats in wire-bottom cages decreased by 2 ± 3 g (P < 0.001). Our results demonstrate that housing rats in wire-bottom cages overnight leads to immediate alterations of HR, BW and LA, which might be related to a stress response.  相似文献   

12.
Routine procedures in the laboratory, inducing acute stress, will have an impact on the animals and might thereby influence scientific results. In an attempt to gain more insight into quantifying this acute stress by means of the parameters heart rate (HR) and body temperature (BT), we subjected mice to different restraint and injection methods. We first compared the treatment response of HR and BT, measured by means of radiotelemetry, with the treatment response of plasma corticosterone (pCORT), a common and well-validated parameter for measuring acute stress responses. It was found that HR, and to a lesser extent also BT, parallels pCORT values after subjecting the animals to different methods of restraint. Secondly, the acute stress response caused by different injection methods was evaluated. Again, HR was found to be a more sensitive parameter than BT. We found that, in case of sham injections, the acute stress response after an intraperitoneal (i.p.) injection was more pronounced than after intramuscular (i.m.) or subcutaneous (s.c.) injections, but this difference was found to be inconsistent when saline was used as injection fluid. In a third experiment we investigated if the level of experience of the animal technician influenced the stress response after s.c. injections, but no differences were found. Overall, the results have indicated that HR might be considered as a useful parameter for measuring acute stress responses to routine procedures, but the value of BT seems to be of limited value in this respect.  相似文献   

13.
Marmosets, Saguinus oedipus oedipus and S. fuscicollis, have been shown to have a diurnal heart rate pattern that has a marked difference between high and low values (about 55 beats/minute) and shows a low point during daylight hours around 1300–1400 hours. A similar pattern for body temperature was seen. A species difference existed; the larger S. o. oedipus has a higher heart rate during both light and dark periods. All measurements were made on undisturbed animals at hourly intervals using radiotelemetry. They were kept in a controlled environment with a light cycle of 12L: 12D and a temperature of 27 ± 1°C.  相似文献   

14.
We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), locomotor activity (LA) and autonomic nervous activity in bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs. For this purpose, HR, BT, LA, and electrocardiogram (ECG) were recorded from conscious and unrestrained guinea pigs using a telemetry system. Autonomic nervous activity was analyzed by power spectral analysis of heart rate variability. Nocturnal patterns, in which the values in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed in HR, BT and LA in both strains of guinea pigs. The autonomic nervous activity in BHS guinea pigs showed a daily pattern, although BHR guinea pigs did not show such a rhythmicity. The high frequency (HF) power in BHS guinea pigs was higher than that in BHR guinea pigs throughout the day. Moreover, the low frequency/high frequency (LF/HF) ratio in BHS guinea pigs was lower than that in BHR guinea pigs throughout the day. These results suggest that parasympathetic nervous activity may be predominant in BHS guinea pigs.  相似文献   

15.
Functional activity of natural antibody is altered in Cr2-deficient mice   总被引:8,自引:0,他引:8  
The major source of natural IgM Abs are B-1 cells, which differ from conventional B cells in their anatomic location, cell surface phenotype, restricted usage of particular V(H) genes and limited use of N-region addition during V-D-J rearrangement. The origin of B-1 cells is unclear. However, they are capable of self-renewal and their development is sensitive to signaling via the B cell receptor, as genetic defects that impair the strength of the signal often result in limited development. These findings suggest that B-1 cells require either an intrinsic signal, or contact with Ag, for positive selection and expansion and/or maintenance in the periphery. In support of interaction with cognate Ag, deficiency in the complement receptors CD21/CD35 results in a 30-40% decrease in the CD5(+) B-1 population. To determine whether this reduction reflects a loss of certain specificities or simply a proportional decline in the repertoire, we examined peritoneal B cells isolated from Cr2(+) and Cr2(def) mice for recognition of a B-1 cell Ag, i.e., phosphatidylcholine, and assayed for injury in an IgM natural Ab-dependent model of reperfusion injury. We found a similar frequency of phosphatidylcholine-specific CD5(+) B-1 cells in the two strains of mice. By contrast, the Cr2(def) mice have reduced injury in the IgM-dependent model of reperfusion injury. Reconstitution of the deficient mice with pooled IgM or adoptive transfer of Cr2(+) peritoneal B cells restored injury. These results suggest that complement receptors CD21/CD35 are important in maintenance of the B-1 cell repertoire to some, but not all, specificities.  相似文献   

16.
Dietary dehydroepiandrosterone (DHEA) reduces food intake in mice, and this response is under genetic control. Moreover, both food restriction and DHEA can prevent or ameliorate certain diseases and mediate other biological effects. Mice fed DHEA (0.45% w/w of food) and mice pair-fed to these mice (food restricted) for 8 weeks were tested for changes in body temperature. DHEA was more efficient than food restriction alone in causing hypothermia. DHEA injected intraperitoneally also induced hypothermia that reached a nadir at 1 to 2 hr, and slowly recovered by 20 to 24 hr. This effect was dose dependent (0.5-50 mg). Each mouse strain tested (four) was susceptible to this effect, suggesting that the genetics differ for induction of hypophagia and induction of hypothermia. Because serotonin and dopamine can regulate (decrease) body temperature, we treated mice with haloperidol (dopamine receptor antagonist), 5,7-dihydroxytryptamine (serotonin production inhibitor), or ritanserin (serotonin receptor antagonist) prior to injection of DHEA. All of these agents increased rather than decreased the hypothermic effects of DHEA. DHEA metabolites that are proximate (5-androstene-3beta, 17beta-diol and androstenedione) or further downstream (estradiol-17beta) were much less effective than DHEA in inducing hypothermia. However, the DHEA analog, 16alpha-chloroepiandrosterone, was as active as DHEA. Thus, DHEA administered parentally seems to act directly on temperature-regulating sites in the body. These results suggest that DHEA induces hypothermia independent of its ability to cause food restriction, to affect serotonin or dopamine functions, or to act via its downstream steroid metabolites.  相似文献   

17.
Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities.  相似文献   

18.

Background  

In this study we used radiotelemetry to measure hemodynamic variables and locomotor activity in conscious unrestrained male Protease-Activated Receptor 2 (PAR-2) knockout mice in order to provide a detailed assessment of their blood pressure phenotype. In addition we tested for an influence of PAR-2 on salt-sensitivity (8% versus 0.5% NaCl diet, 2.5 weeks) and angiotensin II-induced hypertension (1 μg Ile5-angiotensin II/kg/min versus 0.25 μl/h saline, 2 weeks).  相似文献   

19.
The present study investigates the effects of a chronic administration of diazepam, a benzodiazepine widely used as an anxiolytic, on locomotor activity and body core temperature rhythms in male Wistar rats housed under 12:12 light:dark (LD) cycle conditions. Diazepam was administered subcutaneously for 3 wks in a dosage of 3 mg/kg body weight/day, 1 h before the onset of darkness. Diazepam increased the level of locomotor activity from the first day until the end of treatment, and also increased the amplitude of the activity circadian rhythm, but only on the third wk of treatment. Diazepam exerted no effects on the length of the period and did not affect the phase of the locomotor activity rhythm. The body temperature rhythm of rats was affected neither by short-term (a single injection) nor by long-term (every day for 3 wks) diazepam treatment. Diazepam lacked effect on body core temperature even on the first day of administration, thereby ruling out the possibility of drug tolerance development. The fact that diazepam affects locomotor activity, but not core body temperature, suggests that different mechanisms mediate the actions of diazepam on locomotor activity and on core body temperature.  相似文献   

20.
The present study investigates the effects of a chronic administration of diazepam, a benzodiazepine widely used as an anxiolytic, on locomotor activity and body core temperature rhythms in male Wistar rats housed under 12∶12 light∶dark (LD) cycle conditions. Diazepam was administered subcutaneously for 3 wks in a dosage of 3 mg/kg body weight/day, 1 h before the onset of darkness. Diazepam increased the level of locomotor activity from the first day until the end of treatment, and also increased the amplitude of the activity circadian rhythm, but only on the third wk of treatment. Diazepam exerted no effects on the length of the period and did not affect the phase of the locomotor activity rhythm. The body temperature rhythm of rats was affected neither by short‐term (a single injection) nor by long‐term (every day for 3 wks) diazepam treatment. Diazepam lacked effect on body core temperature even on the first day of administration, thereby ruling out the possibility of drug tolerance development. The fact that diazepam affects locomotor activity, but not core body temperature, suggests that different mechanisms mediate the actions of diazepam on locomotor activity and on core body temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号