首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Alpha-helical coiled coils represent a widespread protein structure motif distinguished by a seven-residue periodicity of apolar residues in the primary sequence. A characteristic "knobs-into-holes" packing of these residues into a hydrophobic core results in a superhelical, usually left-handed, rope of two or more alpha-helices. Such a geometry can be parameterized. For this purpose, a new computer program, TWISTER, was developed. With the three-dimensional coordinates as input, TWISTER uses an original algorithm to determine the local coiled-coil parameters as a function of residue number. In addition, heptad positions are assigned based on structural criteria. It is known that frequently encountered discontinuities in the heptad repeat, such as stutters and skips, can be tolerated within a continuous coiled coil but result in a local distortion of its geometry. This was explored in detail with the help of TWISTER for several two- and three-stranded coiled coils. Depending on the particular protein, stutters were found to be compensated locally by an unwinding of the superhelix, alpha-helical unwinding, or both. In the first case, there is often a local switch from a left-handed to a right-handed superhelix. In general, the geometrical distortion is confined to about two alpha-helical turns at either side of the stutter. Furthermore, stutters result in a local increase of the coiled-coil radius.  相似文献   

2.
Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.  相似文献   

3.
We have determined the crystal structure of the DUF16 domain of unknown function encoded by the gene MPN010 of Mycoplasma pneumoniae at 1.8 A resolution. The crystal structure revealed that this domain is composed of two separated homotrimeric coiled-coils. The shorter one consists of 11 highly conserved residues. The sequence comprises noncanonical heptad repeats that induce a right-handed coiled-coil structure. The longer one is composed of approximately nine heptad repeats. In this coiled-coil structure, there are three distinguishable regions that confer unique structural properties compared with other known homotrimeric coiled-coils. The first part, containing one stutter, is an unusual phenylalanine-rich region that is not found in any other coiled-coil structures. The second part is a highly conserved glutamine-rich region, frequently found in other trimeric coiled-coil structures. The last part is composed of prototype heptad repeats. The phylogenetic analysis of the DUF16 family together with a secondary structure prediction shows that the DUF16 family can be classified into five subclasses according to N-terminal sequences. Based on the structural comparison with other coiled-coil structures, a probable molecular function of the DUF16 family is discussed.  相似文献   

4.
EndoA cytokeratin (EndoA) belongs to a family of intermediate filaments (IFs) and is coordinately expressed with EndoB cytokeratin during early mouse embryogenesis. We have isolated and sequenced a cDNA from a library constructed from mRNA of parietal yolk sac-like cells, PYS-2, which are derived from mouse teratocarcinoma. Sequence analysis reveals that EndoA is composed of 490 amino acids, its Mr is 54,362, and it contains a central alpha-helical coiled-coil structure flanked by non-alpha-helical domains. The amino acid sequence of EndoA is highly homologous with human cytokeratin No. 8 (93%) and with bovine cytokeratin No. 8 (91%) not only in the central domain, but also in its tail portion, which is less conserved among other intermediate filaments. A comparison with the other cytokeratin proteins characterizes this polypeptide as a non-epidermal type of cytokeratin of the basic (type-II) subfamily. The C-terminal sequence of EndoA is identical to that of human and bovine cytokeratin No. 8 and also highly conserved in other intermediate filaments (desmin, vimentin, glial fibrillary acidic protein and EndoB). It suggests that these may be involved in interaction with some cell component(s), or in more general roles to form IFs. The N-terminal head region is rich in Ser residues including possible phosphorylation sites.  相似文献   

5.
The sequence of the amino-terminal 436 residues of porcine neurofilament component NF-M (apparent mol. wt. in gel electrophoresis 160 kd), one of the two high mol. wt. components of mammalian neurofilaments, reveals the typical structural organization of an intermediate filament (IF) protein of the non-epithelial type. A non-alpha-helical arginine-rich headpiece with multiple beta-turns (residues 1-98) precedes a highly alpha-helical rod domain able to form double-stranded coiled-coils (residues 99-412) and a non-alpha-helical tailpiece array starting at residue 413. All extra mass of NF-M forms, as a carboxy-terminal tailpiece extension of approximately 500 residues, an autonomous domain of unique composition. Limited sequence data in the amino-terminal region of this domain document a lysine- and particularly glutamic acid-rich array somewhat reminiscent of the much shorter tailpiece extension of NF-L (apparent mol. wt. 68 kd), the major neurofilament protein. NF-M is therefore a true intermediate filament protein co-polymerized with NF-L via presumptive coiled-coil type interactions and not a peripherally bound associated protein of a filament backbone built exclusively from NF-L. Along the structurally conserved coiled-coil domains the two neurofilament proteins show only approximately 65% sequence identity, a value similar to that seen when NF-L and NF-M are compared with mesenchymal vimentin. The highly charged and acidic tailpiece extensions of all triplet proteins particularly rich in glutamic acid seem unique to the neurofilament type of IFs. They could form extra-filamentous scaffolds suitable for interactions with other neuronal components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A comprehensive analysis of the sequences of all types of intermediate filament chains has been undertaken with a particular emphasis on those of segment 1A and linker L1. This has been done to assess whether structural characteristics can be recognized in the sequences that would be consistent with the role of each region in the recently proposed "swinging head" hypothesis. The analyses show that linker L1 is the most flexible rod domain region, that it is the most elongated structure (on a per residue basis), and that it is the most variable region as regards sequence and length. Segment 1A has one of the two most highly conserved regions of sequence in the rod domain (the other being at the end of segment 2B), with seven particular residues conserved across all chain types. It also contains one of the very few potential interchain ionic interactions that could be conserved across all chain types. However, the aggregation of chains in segment 1A is specified less precisely overall by interchain ionic interactions than are the other coiled-coil segments. The apolar residue contents in positions a and d of the heptad substructure are the highest of any coiled-coil segment in the intermediate filament family. Segment 1A also displays an amino acid composition atypical of not only coiled-coil segments 1B and 2B, but indeed of two-stranded coiled coils in general. Nonetheless, molecular modeling based on the crystal structure of the monomeric 1A fragment from human vimentin shows that coiled-coil formation is plausible. The most extensive regions of apolar/aromatic residues lie at the C-terminal end of segment 2B in the helix termination motif and in segment 1A in and close to the helix initiation motif. The predicted stability of the individual alpha-helices in segment 1A is greater than in those comprising segments 1B and 2B, though potential intrachain ionic interactions are either lacking or are minimal in number. Analysis of the 1A sequence and those regions immediately N- and C-terminal to it has shown that the capping residues are near optimal close to the previously predicted ends, thus adding to the likely stability of the alpha-helical structure. However, a second terminating sequence is predicted in 1A (about 10 residues back from the C-terminus). This allows the possibility of some unwinding of the alpha-helical structure of 1A immediately adjacent to linker L1 when the head domains no longer stabilize the coiled-coil structure. All of these data are consistent with the concept of a flexible hinge at L1 and with the ability of the two alpha-helical coiled-coil strands to separate under appropriate conditions and partly unwind at their C-terminal ends to allow the head domains a greater degree of mobility, thus facilitating function.  相似文献   

7.
The discontinuities found in heptad repeats of α-helical coiled-coil proteins have been characterized. A survey of 40 α-fibrous proteins reveals that only two classes of heptad breaks are prevalent: the stutter, corresponding to a deletion of three residues, and the newly identified “stammer,” corresponding to a deletion of four residues. This restriction on the variety of insertions/deletions encountered gives support to a unifying structural model, where different degrees of supercoiling accommodate the observed breaks. Stutters in the hemagglutinin coiled-coil region have previously been shown to produce an underwinding of the supercoil, and we show here how, in other cases, stammers would lead to overwinding. An analysis of main-chain structure also indicates that the mannose-binding protein, as well as hemagglutinin, contains an underwound coiled-coil region. In contrast to knobs-into-holes packing, these models give rise to non-close-packed cores at the sites of the heptad phase shifts. We suggest that such non-close-packed cores may function to terminate certain coiled-coil regions, and may also account for the flexibility observed in such long α-fibrous molecules as myosin. The local underwinding or overwinding caused by these specific breaks in the heptad repeat has a global effect on the structure and can modify both the assembly of the protein and its interaction properties. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The bacteriophage T4 late gene wac (whisker antigen control) encodes the protein which forms the fibrous structure on the neck of the virion called whiskers. Amino acid sequence analysis of wac gene product, as deduced from the nucleotide sequence, indicate ten alpha-helical domains (19-40 residues long) with coiled-coil structural patterns. These regions comprise about 70% of the entire 486 amino acid sequence. The alpha-helices are separated by short stretches of polypeptide chain which are similar to the loop regions of the globular protein sequences. We propose a structural model for the dimer of wac gene product molecule, that we call fibritin in which two polypeptide chains associate in a parallel fashion and form a segmented alpha-helical coiled-coil rod similar to epidermal keratins.  相似文献   

9.
The conformation adopted by intermediate filament chains (IF) has been described in terms of a central rod domain with four, alpha-helical, left-handed coiled-coil segments (1A, 1B, 2A, and 2B) joined by linkers (L1, L12, and L2, respectively). The rod domain is terminated at its N- and C-terminal ends by "globular" head and tail domains, respectively. This analysis, initially undertaken about 20-25 years ago, was based on the recognition of an underlying heptad substructure in the sequence of the rod domain, the presence of which can be directly associated with an alpha-helical coiled-coil structure. In this work, a hendecad sequence motif that is closely related to the heptad repeat but which is nonetheless significantly different from it has been recognized in the primary structure of segments 2A and linker L2. This motif, which is 11 residues long and structurally equivalent to a true heptad plus another heptad with an inclusive stutter, is consistent with the chains adopting a continuous right-handed coiled-coil structure with a long-period pitch length. It is therefore predicted that segment 2 as a whole may have a coiled-coil conformation with both right-handed (2A+L2) and left-handed (2B) regions. The changeover in handedness would be expected to occur at the C-terminal end of linker L2 and N-terminal end of segment 2B.  相似文献   

10.
Type XIII collagen is a homotrimeric transmembrane collagen composed of a short intracellular domain, a single membrane-spanning region, and an extracellular ectodomain with three collagenous domains (COL1-3) separated by short non-collagenous domains (NC1-4). Several collagenous transmembrane proteins have been found to harbor a conserved sequence next to their membrane-spanning regions, and in the case of type XIII collagen this sequence has been demonstrated to be important for chain association. We show here that this 21-residue sequence is necessary but not sufficient for NC1 association. Furthermore, the NC1 association region was predicted to form an alpha-helical coiled-coil structure, which may already begin at the membrane-spanning region, as is also predicted for the related collagen types XXIII and XXV. Interestingly, a second coiled-coil structure is predicted to be located in the NC3 domain of type XIII collagen and in the corresponding domains of types XXIII and XXV. It is found experimentally that the absence of the NC1 coiled-coil domain leads to a lack of disulfide-bonded trimers and misfolding of the membrane-proximal collagenous domain COL1, whereas the COL2 and COL3 domains are correctly folded. We suggest that the NC1 coiled-coil domain is important for association of the N-terminal part of the type XIII collagen alpha chains, whereas the NC3 coiled-coil domain is implicated in the association of the C-terminal part of the molecule. All in all, we propose that two widely separated coiled-coil domains of type XIII and related collagens function as independent oligomerization domains participating in the folding of distinct areas of the molecule.  相似文献   

11.
Detailed analyses of protein structures provide an opportunity to understand conformation and function in terms of amino acid sequence and composition. In this work, we have systematically analyzed the characteristic features of the amino acid residues found in alpha-helical coiled-coils and, in so doing, have developed indices for their properties, conformational parameters, surrounding hydrophobicity and flexibility. As expected, there is preference for hydrophobic (Ala, Leu), positive (Lys, Arg) and negatively (Glu) charged residues in coiled-coil domains. However, the surrounding hydrophobicity of residues in coiled-coil domains is significantly less than that for residues in other regions of coiled-coil proteins. The analysis of temperature factors in coiled-coil proteins shows that the residues in these domains are more stable than those in other regions. Further, we have delineated the medium- and long-range contacts in coiled-coil domains and compared the results with those obtained for other (non-coiled-coil) parts of the same proteins and non-coiled-coil helical segments of globular proteins. The residues in coiled-coil domains are largely influenced by medium-range contacts, whereas long-range interactions play a dominant role in other regions of these same proteins as well as in non-coiled-coil helices. We have also revealed the preference of amino acid residues to form cation-pi interactions and we found that Arg is more likely to form such interactions than Lys. The parameters developed in this work can be used to understand the folding and stability of coiled-coil proteins in general.  相似文献   

12.
Molecular architecture of intermediate filaments   总被引:17,自引:0,他引:17  
Together with microtubules and actin microfilaments, approximately 11 nm wide intermediate filaments (IFs) constitute the integrated, dynamic filament network present in the cytoplasm of metazoan cells. This network is critically involved in division, motility and other cellular processes. While the structures of microtubules and microfilaments are known in atomic detail, IF architecture is presently much less understood. The elementary 'building block' of IFs is a highly elongated, rod-like dimer based on an alpha-helical coiled-coil structure. Assembly of cytoplasmic IF proteins, such as vimentin, begins with a lateral association of dimers into tetramers and gradually into the so-called unit-length filaments (ULFs). Subsequently ULFs start to anneal longitudinally, ultimately yielding mature IFs after a compaction step. For nuclear lamins, however, assembly starts with a head-to-tail association of dimers. Recently, X-ray crystallographic data were obtained for several fragments of the vimentin dimer. Based on the dimer structure, molecular models of the tetramer and the entire filament are now a possibility.  相似文献   

13.
Intermediate filaments (IFs) represent one of the prominent cytoskeletal elements of metazoan cells. Their constituent proteins are coded by a multigene family, whose members are expressed in complex patterns that are controlled by developmental programs of differentiation. Hence, IF proteins found in epidermis differ significantly from those in muscle or neuronal tissues. Due to their fibrous nature, which stems from a fairly conserved central alpha-helical coiled-coil rod domain, IF proteins have long resisted crystallization and thus determination of their atomic structure. Since they represent the primary structural elements that determine the shape of the nucleus and the cell more generally, a major challenge is to arrive at a more rational understanding of how their nanomechanical properties effect the stability and plasticity of cells and tissues. Here, we review recent structural results of the coiled-coil dimer, assembly intermediates and growing filaments that have been obtained by a hybrid methods approach involving a rigorous combination of X-ray crystallography, small angle X-ray scattering, cryo-electron tomography, computational analysis and molecular modeling.  相似文献   

14.
The amino acid sequence of component 8c-1 from alpha-keratin was analysed by using secondary-structure prediction techniques, homology search methods, fast Fourier-transform techniques to detect regularities in the linear disposition of amino acids, interaction counts to assess possible modes of chain aggregation and assessment of hydrophilicity distribution. The analyses show the following. The molecule has two lengths of coiled-coil structure, each about 20 nm long, one from residues 56-202 with a discontinuity from about residue 91 to residue 101, and the other from residues 219-366 with discontinuities from about residue 238 to residue 245 and at about residue 306. The acidic and basic residues in the coiled-coil segment between residues 102 and 202 show a 9,4-residue structural period in their linear disposition, whereas between residues 246 and 366 a period of 9.9 residues is observed in the positioning of ionic residues. Acidic and basic residues are out of phase by 180 degrees. Similar repeats occur in corresponding regions of other intermediate-filament proteins. The overall mean values for the repeats are 9.55 residues in the N-terminal region and 9.85 residues in the C-terminal region. The regions at each end of the protein chain (residues 1-55 and 367-412) are not alpha-helical and contain many potential beta-bends. The regions specified in have a significant degree of homology mainly due to a semi-regular disposition of proline and half-cystine residues on a three-residue grid; this is especially apparent in the C-terminal segment, in which short (Pro-Cys-Xaa)n regions occur. The coiled-coil segments of component 8c-1 bear a striking similarity to corresponding segments of other intermediate-filament proteins as regards sequence homology, structural periodicity of ionic residues and secondary/tertiary-structure predictions. The assessments of the probabilities that these homologies occurred by chance indicate that there are two populations of keratin filament proteins. The non-coiled-coil regions at each end of the chain are less hydrophilic than the coiled-coil regions. Ionic interactions between the heptad regions of components 8c-1 and 7c from the microfibrils of alpha-keratin are optimized when a coiled-coil structure is formed with the heptad regions of the constituent chains both parallel and in register.  相似文献   

15.
The C-terminal domains of yeast structural maintenance of chromosomes (SMC) proteins were previously shown to bind double-stranded DNA, which generated the idea of the antiparallel SMC heterodimer, such as the SMC1/3 dimer, bridging two DNA molecules. Analysis of bovine SMC1 and SMC3 protein domains now reveals that not only the C-terminal domains, but also the coiled-coil region, binds DNA, while the N terminus is inactive. Duplex DNA and DNA molecules with secondary structures are highly preferred substrates for both the C-terminal and coiled-coil domains. Contrasting other cruciform DNA-binding proteins like HMG1, the SMC3 C-terminal and coiled-coil domains do not bend DNA, but rather prevent bending in ring closure assays. Phosphatase, exonuclease, and ligase assays showed that neither domain renders DNA ends inaccessible for other enzymes. These observations allow modifications of models for SMC-DNA interactions.  相似文献   

16.
Desmin (DES) mutations have been recognized as a cause of desmin-related myopathy (OMIM 601419), or desminopathy, a disease characterized by progressive limb muscle weakness and accumulation of desmin-reactive granular aggregates in the myofibers. We have studied three families with skeletal or cardioskeletal myopathy caused by small in-frame deletions in the desmin gene. The newly identified in-frame deletions E359_S361del and N366del alter the heptad periodicity within a critical 2B coiled-coil segment. Structural analysis reveals that the E359_S361 deletion introduces a second stutter immediately downstream of the naturally occurring stutter, thus doubling the extent of the local coiled-coil unwinding. The N366del mutation converts the wild-type stutter into a different type of discontinuity, a stammer. A stammer, as opposed to a stutter, is expected to cause an extra overwinding of the coiled-coil. These mutations alter the coiled-coil geometry in specific ways leading to fatal damage to desmin filament assembly. Expression studies in two cell lines confirm the inability of desmin molecules with this changed architecture to polymerize into a functional filamentous network. This study provides insights into molecular pathogenetic mechanisms of desmin mutation-associated skeletal and cardioskeletal myopathy.Electronic database information: nucleotide and amino acid sequence data are available in the GenBank database () under accession nos. AY114212 for E359_S361del and AF21879 for N366del mutations  相似文献   

17.
Coiled coils: a highly versatile protein folding motif   总被引:31,自引:0,他引:31  
The alpha-helical coiled coil is one of the principal subunit oligomerization motifs in proteins. Its most characteristic feature is a heptad repeat pattern of primarily apolar residues that constitute the oligomer interface. Despite its simplicity, it is a highly versatile folding motif: coiled-coil-containing proteins exhibit a broad range of different functions related to the specific 'design' of their coiled-coil domains. The architecture of a particular coiled-coil domain determines its oligomerization state, rigidity and ability to function as a molecular recognition system. Much progress has been made towards understanding the factors that determine coiled-coil formation and stability. Here we discuss this highly versatile protein folding and oligomerization motif with regard to its structural architecture and how this is related to its biological functions.  相似文献   

18.
Diverse Gram-negative bacteria use type III secretion systems (T3SS) to translocate effector proteins into the cytoplasm of eukaryotic cells. The type III secretion apparatus (T3SA) consists of a basal body spanning both bacterial membranes and an external needle. A sensor protein lies at the needle tip to detect environmental signals that trigger type III secretion. The Shigella flexneri T3SA needle tip protein, invasion plasmid antigen D (IpaD), possesses two independently folding domains in vitro. In this study, the solution behavior and thermal unfolding properties of IpaD's functional homologs SipD (Salmonella spp.), BipD (Burkholderia pseudomallei), LcrV (Yersinia spp.), and PcrV (Pseudomonas aeruginosa) were examined to identify common features within this protein family. CD and FTIR data indicate that all members within this group are alpha-helical with properties consistent with an intramolecular coiled-coil. SipD showed the most complex unfolding profile consisting of two thermal transitions, suggesting the presence of two independently folding domains. No evidence of multiple folding domains was seen, however, for BipD, LcrV, or PcrV. Thermal studies, including DSC, revealed significant destabilization of LcrV, PcrV, and BipD after N-terminal deletions. This contrasted with SipD and IpaD, which behaved like two-domain proteins. The results suggest that needle tip proteins share significant core structural similarity and thermal stability that may be the basis for their common function. Moreover, IpaD and SipD possess properties that distinguish them from the other tip proteins.  相似文献   

19.
Analysis of the sequence for the gene encoding PspA (pneumococcal surface protein A) of Streptococcus pneumoniae revealed the presence of four distinct domains in the mature protein. The structure of the N-terminal half of PspA was highly consistent with that of an alpha-helical coiled-coil protein. The alpha-helical domain was followed by a proline-rich domain (with two regions in which 18 of 43 and 5 of 11 of the residues are prolines) and a repeat domain consisting of 10 highly conserved 20-amino-acid repeats. A fourth domain consisting of a hydrophobic region too short to serve as a membrane anchor and a poorly charged region followed the repeats and preceded the translation stop codon. The C-terminal region of PspA did not possess features conserved among numerous other surface proteins, suggesting that PspA is attached to the cell by a mechanism unique among known surface proteins of gram-positive bacteria. The repeat domain of PspA was found to have significant homology with C-terminal repeat regions of proteins from Streptococcus mutans, Streptococcus downei, Clostridium difficile, and S. pneumoniae. Comparisons of these regions with respect to functions and homologies suggested that, through evolution, the repeat regions may have lost or gained a mechanism for attachment to the bacterial cell.  相似文献   

20.
Laminins and other strange proteins.   总被引:15,自引:0,他引:15  
J Engel 《Biochemistry》1992,31(44):10643-10651
Laminins are large multidomain proteins of the extracellular matrix (ECM) with important functions in the development and maintenance of cellular organization and supramolecular structure, in particular in basement membranes. Each molecule is composed of three polypeptide chains, A (300-400 kDa) and B1 and B2 (180-200 kDa), which together form the characteristic cross-shaped laminin structure with three short arms and one long arm. Many different domains have been identified in laminin by sequence analysis, structural investigations, and functional studies. Each short arm is formed by homologous N-terminal portions of one of the three chains. Structurally, each short arm contains two or three globular domains which are connected by rows of manyfold-repeated Cys-rich "EGF-like" domains. In all three chains this region is followed by a long heptad repeat region similar to those found in many alpha-helical coiled-coil proteins. These parts of the three laminin chains constitute a triple-stranded coiled-coil domain, which forms the extended rodlike structure of the long arm. This is the only domain in the protein which is made up of more than one chain and consequently serves the function of chain assembly. The two B chains are terminated by the coiled-coil domain, but the A chain contains an additional C-terminal segment which accounts for five globular domains located at the tip of the long arm. Several important functions of laminin have been assigned to individual domains in either the short arms or terminal regions of the long arm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号