首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The interaction of cells with extracellular matrix, termed cell-matrix adhesions, importantly governs multiple cellular phenomena. Knowledge of the functional dynamics of cell-matrix adhesion could provide critical clues for understanding biological phenomena. We developed surface plasmon resonance imaging ellipsometry (SPRIE) to provide high contrast images of the cell-matrix interface in unlabeled living cells. To improve the contrast and sensitivity, the null-type imaging ellipsometry technique was integrated with an attenuated total reflection coupler. We verified that the imaged area of SPRIE was indeed a cell-matrix adhesion area by confocal microscopy imaging. Using SPRIE, we demonstrated that three different cell types exhibit distinct features of adhesion. SPRIE was applied to diverse biological systems, including during cell division, cell migration, and cell-cell communication. We imaged the cell-matrix anchorage of mitotic cells, providing the first label-free imaging of this interaction to our knowledge. We found that cell-cell communication can alter cell-matrix adhesion, possibly providing direct experimental evidence for cell-cell communication-mediated changes in cell adhesion. We also investigated shear-stress-induced adhesion dynamics in real time. Based on these data, we expect that SPRIE will be a useful methodology for studying the role of cell-matrix adhesion in important biological phenomena.  相似文献   

2.
Cell adhesion molecules play a critical role in cell contacts, whether cell-cell or cell-matrix, and are regulated by multiple signaling pathways. In this report, we identify a novel ring zinc finger-leucine-rich repeat containing protein (RIFLE) and show that RIFLE, expressed in PC12 cells, enhances the Serine (Ser)21/9 phosphorylation of glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) resulting in the inhibition of GSK-3 kinase activity and increase of beta-catenin levels. RIFLE expression also is associated with elevated E-cadherin protein levels but not N-cadherin. The regulation of these cell adhesion-associated molecules by RIFLE is accompanied by a significant increase in cell-cell and cell-matrix adhesion. Moreover, increase in cell-cell adhesion but not cell-matrix adhesion by RIFLE can be mimicked by selective inhibition of GSK-3. Our results suggest that RIFLE represents a novel signaling protein that mediates components of the Wnt/wingless signaling pathway and cell adhesion in PC12 cells.  相似文献   

3.
Guo Q  Xia B  Zhang F  Richardson MM  Li M  Zhang JS  Chen F  Zhang XA 《PloS one》2012,7(6):e38464
Alterations in tetraspanin CO-029 expression are associated with the progression and metastasis of cancers in the digestive system. However, how CO-029 promotes cancer metastasis is still poorly understood. To determine the mechanism, we silenced CO-029 expression in HT29 colon cancer cells and found that the CO-029 knockdown significantly reduced cell migratory ability. The diminished cell migration was accompanied by the upregulation of both integrin-dependent cell-matrix adhesion on laminin and calcium-dependent cell-cell adhesion. The cell surface levels of laminin-binding integrin α3β1 and fibronectin-integrin α5β1 were increased while the level of CD44 was decreased upon CO-029 silencing. These changes contribute to the altered cell-matrix adhesion. The deregulated cell-cell adhesion results, at least partially, from increased activity of cadherins and reduced level of MelCAM. In conclusion, CO-029 functions as a regulator of both cell-matrix and cell-cell adhesion. During colon cancer progression, CO-029 promotes cancer cell movement by deregulating cell adhesions.  相似文献   

4.
In this paper we consider a simple continuous model to describe cell invasion, incorporating the effects of both cell-cell adhesion and cell-matrix adhesion, along with cell growth and proteolysis by cells of the surrounding extracellular matrix (ECM). We demonstrate that the model is capable of supporting both noninvasive and invasive tumour growth according to the relative strength of cell-cell to cell-matrix adhesion. Specifically, for sufficiently strong cell-matrix adhesion and/or sufficiently weak cell-cell adhesion, degradation of the surrounding ECM accompanied by cell-matrix adhesion pulls the cells into the surrounding ECM. We investigate the criticality of matrix heterogeneity on shaping invasion, demonstrating that a highly heterogeneous ECM can result in a “fingering” of the invasive front, echoing observations in real-life invasion processes ranging from malignant tumour growth to neural crest migration during embryonic development.  相似文献   

5.
Changes in vascular endothelial (VE)-cadherin-mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin-mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells.  相似文献   

6.
Ogita H  Takai Y 《IUBMB life》2006,58(5-6):334-343
Nectins and nectin-like molecules (Necls) are immunoglobulin-like cell adhesion molecules that constitute families containing four and five members, respectively. All members, except for Necl-5, trans-interact homophilically. Furthermore, all members, including Necl-5, trans-interact heterophilically with their respective specific partners among the members. Necl-5 regulates cell movement and proliferation cooperatively with integrin alphavbeta3 and growth factor receptors. Nectins function as cell-cell adhesion molecules at a variety of cell-cell junctions, including adherens junctions, and regulate the initial step of cell-cell junction formation. Nectins and integrin alphavbeta3 are further involved in the cross-talk between cell-matrix and cell-cell junctions. Thus, both nectin and Necl family members play important roles in fundamental cellular functions, including cell adhesion, polarization, movement, and proliferation.  相似文献   

7.
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.  相似文献   

8.
The inner ear is a complex sensory organ that forms from a simple epithelial placode. The expression patterns of cell adhesion molecules and extracellular matrix components that have been described in the developing inner ear to date are summarized. Whilst our knowledge of the distribution of some of the known elements involved in cell-cell and cell-matrix interactions is in some instances quite limited, these studies generally suggest many potential roles for cell-cell and cell-matrix interactions in various aspects of inner ear development. However, there is a serious need for experimental studies to assess these possibilities.  相似文献   

9.
10.
The ability of cells to tightly adhere to one another and to the extracellular matrix is fundamentally important in numerous biological processes, including embryogenesis, wound healing and maintenance of tissue integrity. Vinculin, a protein localized at the cytoplasmic face of cell-matrix and cell-cell adhesions, is required for strong cell adhesion. Two new crystal structures reveal that vinculin exhibits a high degree of structural plasticity upon ligand binding that might promote rapid changes in cell adhesion.  相似文献   

11.
FAK and paxillin are important components in integrin-regulated signaling. New evidence suggests that these two proteins function in crosstalk between cell-matrix and cell-cell adhesions. Further, new insight suggests that under some conditions these proteins inhibit cell migration, in contrast to their established roles in several cell systems as positive regulators of cell adhesion and migration.  相似文献   

12.
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues to better understand cell motility, force generation, cell-cell interaction, and assembly in an in vitro breast cancer model. MCF-10A non-tumorigenic mammary epithelial cells were observed on surfaces with varying fibronectin ligand concentration and polyacrylamide gel rigidity. Our data show that cell velocity is biphasic in both matrix rigidity and adhesiveness. The maximum cell migration velocity occurs only at specific combination of substrate stiffness and ligand density. We found cell-cell interactions reduce migration velocity. However, the traction forces cells exert onto the substrate increase linearly with both cues, with cells in pairs exerting higher maximum tractions observed over single cells. A relationship between force and motility shows a maximum in single cell velocity not observed in cell pairs. Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤ 1250 Pascals (Pa), implying the existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. Finally on gels with stiffness similar to pre-malignant breast tissue, 400 Pa, cells undergo multicellular assembly and division into 3D spherical aggregates on a 2D surface.  相似文献   

13.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

14.
Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft progression was determined as follows: cleft cell contractility, cleft region cell-cell adhesion strength, epithelial cell mitosis rate, and cell-matrix adhesion strength.  相似文献   

15.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

16.
The approximately 14 kb mRNA of the polycystic kidney disease gene PKD1 encodes a large ( approximately 460 kDa) protein, termed polycystin-1 (PC-1), that is responsible for autosomal dominant polycystic kidney disease (ADPKD). The unique organization of its multiple adhesive domains (16 Ig-like domains/PKD domains) suggests that it may play an important role in cell-cell/cell-matrix interactions. Here we demonstrated that PKD1 promoted cell-cell and cell-matrix interactions in cancer cells, indicating that PC-1 is involved in the cell adhesion process. Furthermore in this study, we showed that PKD1 inhibited cancer cells migration and invasion. And we also showed that PC-1 regulated these processes in a process that may be at least partially through the Wnt pathway. Collectively, our data suggest that PKD1 may act as a novel member of the tumor suppressor family of genes.  相似文献   

17.
Vascular smooth muscle cell (SMC) switching between differentiated and dedifferentiated phenotypes is reversible and accompanied by morphological and functional alterations that require reconfiguration of cell-cell and cell-matrix adhesion networks. Studies attempting to explore changes in overall composition of the adhesion nexus during SMC phenotype transition are lacking. We have previously demonstrated that T-cadherin knockdown enforces SMC differentiation, whereas T-cadherin upregulation promotes SMC dedifferentiation. This study used human aortic SMCs ectopically modified with respect to T-cadherin expression to characterize phenotype-associated cell-matrix adhesion molecule expression, focal adhesions configuration and migration modes. Compared with dedifferentiated/migratory SMCs (expressing T-cadherin), the differentiated/contractile SMCs (T-cadherin-deficient) exhibited increased adhesion to several extracellular matrix substrata, decreased expression of several integrins, matrix metalloproteinases and collagens, and also distinct focal adhesion, adherens junction and intracellular tension network configurations. Differentiated and dedifferentiated phenotypes displayed distinct migrational velocity and directional persistence. The restricted migration efficiency of the differentiated phenotype was fully overcome by reducing actin polymerization with ROCK inhibitor Y-27632 whereas myosin II inhibitor blebbistatin was less effective. Migration efficiency of the dedifferentiated phenotype was diminished by promoting actin polymerization with lysophosphatidic acid. These findings held true in both 2D-monolayer and 3D-spheroid migration models. Thus, our data suggest that despite global differences in the cell adhesion nexus of the differentiated and dedifferentiated phenotypes, structural actin cytoskeleton characteristics per se play a crucial role in permissive regulation of cell-matrix adhesive interactions and cell migration behavior during T-cadherin-induced SMC phenotype transition.  相似文献   

18.
The insulin-like growth factor-I receptor (IGF-IR) is a ubiquitous multifunctional tyrosine kinase that has an important role in normal cell growth and development. However, abnormal stimulation of IGF-IR signaling has been implicated in the development of different types of tumors. The strong antiapoptotic activity of IGF-IR has been recognized as critical in IGF-I-dependent tumorigenesis, however, the impact of other IGF-IR functions, such as regulation of cell-cell and cell-matrix adhesion are also increasingly acknowledged. Here, on the model of breast cancer cells, we discuss how IGF-IR-dependent regulation of intercellular adhesion may affect cell survival, resistance to antiestrogens, and invasion.  相似文献   

19.
We have proposed previously that the polysialic acid (PSA) moiety of NCAM can influence membrane-membrane apposition, and thereby serve as a selective regulator of a variety of contact-dependent cell interactions. In this study, cell and tissue culture models are used to obtain direct evidence that the presence of PSA on the surface membrane can affect both cell-cell and cell-substrate interactions. Using a neuroblastoma/sensory neuron cell hybrid, it was found that removal of PSA with a specific neuraminidase (endo-N) augments cell-cell aggregation mediated by the L1 cell adhesion molecule as well as cell attachment to a variety of tissue culture substrates. In studies of embryonic spinal cord axon bundling, which involves both cell-cell and cell-substrate interactions, the pronounced defasciculation produced by removal of PSA is most easily explained by an increase in cell-substrate interaction. The fact that in both studies NCAM's intrinsic adhesion function was found not to be an important variable further illustrates that regulation of the cell surface by PSA can extend beyond binding mediated by the NCAM polypeptide.  相似文献   

20.
Small cell lung carcinoma (SCLC) is a highly metastatic disease with a poor prognosis due to its resistance to current modes of therapy. SCLC cells appear to arise by oncogenic transformation of self-renewing pulmonary neuroendocrine cells, which have the potential to differentiate into a variety of lung epithelial cell lineages. Epithelial-mesenchymal conversion involved in such cell type transitions leads to the acquisition of an invasive and metastatic phenotype and may be critical for neoplastic progression and its eventual resistance to therapy. In order to investigate mechanisms involved in such transitions, a SCLC cell line was exposed to 5-bromodeoxyuridine. This treatment induced a dramatic conversion from non-substrate-adherent aggregates to monolayers of cells exhibiting an epithelioid phenotype. The phenotypic transition was concomitant with downregulation of vimentin, upregulation of cytokeratins, and cell-cell and cell-matrix adhesion molecules as well as redistribution of the actin cytoskeleton. The changes in the levels and organization of cell-cell and cell-matrix adhesion molecules were correlated with an in vivo loss of tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号