首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The review is devoted to the analysis of experimental data about possible mechanisms of transdifferentiation or plasticity of tissue specific stem cells. Considerable attention is focused on the mechanisms and genetic consequences of fusion of different types of donor cells with the cells of recipient tissues which investigated on the models of cellular therapy of liver and heart diseases. The role of various kinds of cell contacts and their role in stem cells integration, reparation and regeneration of injured tissue and horizontal genes transfer are considered.  相似文献   

2.
Postnatally, heart muscle cells almost completely lose their ability to divide, which makes their loss after trauma irreversible. Potential repair by cell grafting or mobilizing endogenous cells is of particular interest for possible treatments for heart disease, where the poor capacity for cardiomyocyte proliferation probably contributes to the irreversibility of heart failure. Knowledge of the molecular mechanisms that underly formation of heart muscle cells might provide opportunities to repair the diseased heart by induction of (trans) differentiation of endogenous or exogenous cells into heart muscle cells. We briefly review the molecular mechanisms involved in early development of the linear heart tube by differentiation of mesodermal cells into heart muscle cells. Because the initial heart tube does not comprise all the cardiac compartments present in the adult heart, heart muscle cells are added to the distal borders of the tube and within the tube. At both distal borders, mesodermal cell are recruited into the cardiac lineage and, within the heart tube, muscular septa are formed. In this review, the relative late additions of heart muscle cells to the linear heart tube are described and the potential underlying molecular mechanisms are discussed.  相似文献   

3.
Recent studies have shown that treatments involving injection of stem cells into animals with damaged cardiac tissue result in improved cardiac functionality. Clinical trials have reported conflicting results concerning the recellularization of post-infarct collagen scars. No clear mechanism has so far emerged to fully explain how injected stem cells, specifically the commonly used mesenchymal stem cells (MSC) and endothelial precursor cells (EPC), help heal a damaged heart. Clearly, these injected stem cells must survive and thrive in the hypoxic environment that results after injury for any significant repair to occur. Here we discuss how ischemic preconditioning may lead to increased tolerance of stem cells to these harsh conditions and increase their survival and clinical potential after injection. As injected cells must reach the site in numbers large enough for repair to be functionally significant, homing mechanisms involved in stem cell migration are also discussed. We review the mechanisms of action stem cells may employ once they arrive at their target destination. These possible mechanisms include that the injected stem cells (1) secrete growth factors, (2) differentiate into cardiomyocytes to recellularize damaged tissue and strengthen the post-infarct scar, (3) transdifferentiate the host cells into cardiomyocytes, and (4) induce neovascularization. Finally, we discuss that tissue engineering may provide a standardized platform technology to produce clinically applicable stem cell products with these desired mechanistic capacities.  相似文献   

4.
Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying mechanisms for beneficial effect on cardiac function, and safety issues.  相似文献   

5.
The mechanisms by which tissue injury after acute myocardial infarction occurs have not been fully elucidated, but considerable evidence suggests that activation of complement plays an important role in the pathophysiology. Reperfusion of the ischemic myocardium is strictly necessary to rescue the exposed tissue from eventual death. However, reversion of the blood supply is also associated with reperfusion injury contributing to tissue injury. Activation of the complement system has indisputable beneficial effects in the immune defense and in the clearance of damaged tissue and apoptotic cells, but excessive activation of the system may lead to uncontrolled tissue damage. This review focuses on the role of complement activation, with focus on the lectin pathway, endothelial dysfunction and cardiovascular diseases, including ischemic heart disease and diabetic angiopathy. Finally, potential therapeutic strategies targeting the complement system are discussed.  相似文献   

6.
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.  相似文献   

7.
During regeneration, lost functional tissue can, in general, be replaced by different mechanisms, including proliferation of terminally differentiated cells or through differentiation of resident stem cells. It is a well-accepted dogma that the mammalian heart cannot efficiently regenerate upon injury as a consequence of insufficient oxygen supply. This is in sharp contrast to the hearts of adult zebrafish or newts that are able to replace lost ventricular tissue. Novel data indicate that the young murine heart also has the ability to regenerate within the first week after birth using mechanisms apparently quite similar to those observed in fish. This now provides us with a good starting point to identify the molecular mechanisms that led to the loss of the regenerative capacity of the adult mammalian heart. These future studies will also indicate whether it will be possible to reawaken the regenerative capability of cardiomyocytes in the human heart by treatment with selected pharmaceuticals.  相似文献   

8.
Obesity and insulin resistance are associated with ectopic lipid deposition in multiple tissues, including the heart. Excess lipid may be stored as triglycerides, but are also shunted into non-oxidative pathways that disrupt normal cellular signaling leading to organ dysfunction and in some cases apoptosis, a process termed lipotoxicity. Various pathophysiological mechanisms have been proposed to lead to lipotoxic tissue injury, which might vary by cell type. Specific mechanisms by which lipotoxicity alter cardiac structure and function are incompletely understood, but are beginning to be elucidated. This review will focus on mechanisms that have been proposed to lead to lipotoxic injury in the heart and will review the state of knowledge regarding potential causes and correlates of increased myocardial lipid content in animal models and humans. We will seek to highlight those areas where additional research is warranted.  相似文献   

9.
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.  相似文献   

10.
The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.  相似文献   

11.
RAS and connective tissue in the heart   总被引:2,自引:0,他引:2  
Circulating angiotensin (Ang) II has well-known endocrine properties in the cardiovasculature. AngII, produced de novo within the heart, has various autocrine and paracrine properties on resident cells expressed via AT(1) receptor-ligand binding. Herein, we review the heart's renin-angiotensin system and its role in connective tissue turnover involving heart valve leaflets and fibrous tissue that appears at sites of injury, such as following myocardial infarction.  相似文献   

12.
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.  相似文献   

13.
14.
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis—endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.  相似文献   

15.
The intricate architecture of heart muscle, comprising irregularly shaped cells which interdigitate in a complex three-dimensional array, has often compromised clear interpretation of experimental data obtained from the whole organ. One approach to minimise some of the difficulties is to use individual muscle cells in suspension, and data have already been reported using myocytes isolated from mammalian ventricles. It is difficult, however, to extrapolate results obtained from animal tissues to situations of medical relevance in man. Intact isolated muscle cells were obtained from human ventricular tissue by modifications of methods used for isolating smooth muscle, atrial, and ventricular tissue from animals. Electrical studies showed that these myocytes had functional characteristics similar to those observed in the whole heart. Such cells will prove a useful preparation for studies on both the mechanisms underlying myocardial performance in normal and diseased states and the response of heart tissue at the cellular level to conditions found during cardiac surgery.  相似文献   

16.
《Organogenesis》2013,9(2):62-66
Recent studies have significantly improved our ability to investigate cell transplantation and study the physiology of transplanted cells in cardiac tissue. Several previous studies have shown that fully-immersed heart slices can be used for electrophysiological investigations. Additionally, ischemic heart slices induced by glucose and oxygen deprivation offer a useful tool to investigate mechanical integration and to measure forces of contraction of engrafted cells, at least for short term analysis. A recent and novel model of heart slices, prepared from rat and human tissues, can be maintained in culture for up to two months. This new heart slice model can be used for long term in vitro cell transplantation studies and for pharmacological evaluation. This review will focus on describing these models and demonstrating the use of organotypic heart slices as a novel tool for drug, for studying electrophysiology and for developing cellular therapeutic approaches to alleviate cardiac tissue damage.  相似文献   

17.
18.
This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechanisms may lead to cancer. Normal tissue homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the concept of a cellular hierarchy in tissues and in tumors. Thus, only a few cells may be necessary and sufficient for tissue repair or tumor regeneration. This is known as the hierarchical model of tumorigenesis. This report will compare this model with the stochastic model of tumorigenesis. Under normal circumstances, the processes of tissue regeneration or homeostasis are tightly regulated by several morphogen pathways to prevent excessive or inappropriate cell growth. This review presents the recent evidence that dysregulation of these processes may provide opportunities for carcinogenesis for the long-lived, highly proliferative tissue stem cell population. New findings of cancer initiating tissue stem cells identified in several solid and circulating cancers including breast, brain and hematopoietic tumors will also be reviewed. Finally, this report reviews the cellular biology of cancer and its relevance to the development of more effective cancer treatment protocols.  相似文献   

19.
Recent studies have significantly improved our ability to investigate cell transplantation and study the physiology of transplanted cells in cardiac tissue. Several previous studies have shown that fully-immersed heart slices can be used for electrophysiological investigations. Additionally, ischemic heart slices induced by glucose and oxygen deprivation offer a useful tool to investigate mechanical integration and to measure forces of contraction of engrafted cells, at least for short term analysis. A recent and novel model of heart slices, prepared from rat and human tissues, can be maintained in culture for up to two months. This new heart slice model can be used for long term in vitro cell transplantation studies and for pharmacological evaluation. This review will focus on describing these models and demonstrating the use of organotypic heart slices as a novel tool for drugs for studying electrophysiology and developing cellular therapeutic approaches to alleviate cardiac tissue damage.Key words: heart, organotypic, culture, stem cells, transplantation, electrophysiology, pharmacology  相似文献   

20.
During the last decade transplantation of cells into the heart has emerged as a novel therapy for the prevention and treatment of heart failure. Although various cell types have been used, most experience has been obtained with the progenitor cells of skeletal muscle, also called myoblasts, and a wide array of bone marrow-derived cell types. The first preclinical studies demonstrated an improvement in global and regional heart function that was attributed mainly to a direct contractile effect of the transplanted cells. Furthermore, it was suggested that multiple cell types are able to form true cardiomyocytes and truly ‘regenerate’ the myocardium. More recent studies have questioned these early findings. Other mechanisms such as paracrine effects on the infarct and remote myocardium, a reduction in adverse remodelling and improvement of mechanical properties of the infarct tissue likely play a more important role. On the basis of encouraging preclinical studies, multiple early-phase clinical trials and several randomised controlled trials have been conducted that have demonstrated the feasibility, safety and potential efficacy of this novel therapy in humans. This review summarises the available evidence on cardiac cell transplantation and provides an outlook on future preclinical and clinical research that has to fill in the remaining gaps. (Neth Heart J 2008; 16:88-95.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号