首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our understanding of the global ecology of avian influenza A viruses (AIVs) is impeded by historically low levels of viral surveillance in Latin America. Through sampling and whole-genome sequencing of 31 AIVs from wild birds in Peru, we identified 10 HA subtypes (H1-H4, H6-H7, H10-H13) and 8 NA subtypes (N1-N3, N5-N9). The majority of Peruvian AIVs were closely related to AIVs found in North America. However, unusual reassortants, including a H13 virus containing a PA segment related to extremely divergent Argentinian viruses, suggest that substantial AIV diversity circulates undetected throughout South America.  相似文献   

2.
为了解东洞庭湖地区野禽驯养繁殖基地禽流感病毒感染状况,2011年11月至2013年10月,调查4家野禽驯养繁殖基地的养殖情况,同时采集环境标本(包括新鲜粪便标本和水标本)。利用PCR和病毒分离方法对标本进行检测。部分标本进行了核酸检测,禽流感病毒(AIV)阳性率为36.62%,2012年3月份阳性率最高(47.83%)。粪便标本、水标本的AIV阳性率分别为40.45%、30.19%,二者无统计学差异。共分离到28株AIV病毒,亚型包括H10、H4、H5和N7、N8,集中于11~12月的标本,主要来源于君山区野禽驯养繁殖基地的雁类和野鸭的新鲜粪便标本。野禽驯养基地的环境标本中存在AIV病毒,以A(H10N7)为主,建议对其进行定期监测。  相似文献   

3.
4.
We report on life history characteristics, temporal, and age-related effects influencing the frequency of occurrence of avian influenza (AI) viruses in four species of migratory geese breeding on the Yukon-Kuskokwim Delta, Alaska. Emperor geese (Chen canagica), cackling geese (Branta hutchinsii), greater white-fronted geese (Anser albifrons), and black brant (Branta bernicla), were all tested for active infection of AI viruses upon arrival in early May, during nesting in June, and while molting in July and August, 2006–2010 (n = 14,323). Additionally, prior exposure to AI viruses was assessed via prevalence of antibodies from sera samples collected during late summer in 2009 and 2010. Results suggest that geese are uncommonly infected by low pathogenic AI viruses while in Alaska. The percent of birds actively shedding AI viruses varied annually, and was highest in 2006 and 2010 (1–3%) and lowest in 2007, 2008, and 2009 (<0.70%). Contrary to findings in ducks, the highest incidence of infected birds was in late spring when birds first arrived from staging and wintering areas. Despite low prevalence, most geese were previously exposed to AI viruses, as indicated by high levels of seroprevalence during late summer (47%–96% across species; n = 541). Seroprevalence was >95% for emperor geese, a species that spends part of its life cycle in Asia and is endemic to Alaska and the Bering Sea region, compared to 40–60% for the other three species, whose entire life cycles are within the western hemisphere. Birds <45 days of age showed little past exposure to AI viruses, although antibodies were detected in samples from 5-week old birds in 2009. Seroprevalence of known age black brant revealed that no birds <4 years old had seroconverted, compared to 49% of birds ≥4 years of age.  相似文献   

5.
Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring.  相似文献   

6.
7.
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.  相似文献   

8.
Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) — a partially migratory species — we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.  相似文献   

9.
Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes – H17N10 and H18N11 – in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum) sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA) types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5μl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from a public health context remain to be investigated.  相似文献   

10.
In 1997, 18 confirmed cases of human influenza arising from multiple independent transmissions of H5N1 viruses from infected chickens were reported from Hong Kong. To identify possible phenotypic changes in the hemagglutinin (HA) and neuraminidase (NA) of the H5 viruses during interspecies transfer, we compared the receptor-binding properties and NA activities of the human and chicken H5N1 isolates from Hong Kong and of H5N3 and H5N1 viruses from wild aquatic birds. All H5N1 viruses, including the human isolate bound to Sia2-3Gal-containing receptors but not to Sia2-6Gal-containing receptors. This finding formally demonstrates for the first time that receptor specificity of avian influenza viruses may not restrict initial avian-to-human transmission. The H5N1 chicken viruses differed from H5 viruses of wild aquatic birds by a 19-amino-acid deletion in the stalk of the NA and the presence of a carbohydrate at the globular head of the HA. We found that a deletion in the NA decreased its ability to release the virus from cells, whereas carbohydrate at the HA head decreased the affinity of the virus for cell receptors. Comparison of amino acid sequences from GenBank of the HAs and NAs from different avian species revealed that additional glycosylation of the HA and a shortened NA stalk are characteristic features of the H5 and H7 chicken viruses. This finding indicates that changes in both HA and NA may be required for the adaptation of influenza viruses from wild aquatic birds to domestic chickens and raises the possibility that chickens may be a possible intermediate host in zoonotic transmission.  相似文献   

11.
Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.  相似文献   

12.
During surveillance programs in Korea between January 2006 and March 2011, 31 H7 avian influenza viruses were isolated from wild birds and domestic ducks and genetically characterized using large-scale sequence data. All Korean H7 viruses belonged to the Eurasian lineage, which showed substantial genetic diversity, in particular in the wild birds. The Korean H7 viruses from poultry were closely related to those of wild birds. Interestingly, two viruses originating in domestic ducks in our study had the same gene constellations in all segment genes as viruses originating in wild birds. The Korean H7 isolates contained avian-type receptors (Q226 and G228), no NA stalk deletion (positions 69–73), no C-terminal deletion (positions 218–230) in NS1, and no substitutions in PB2-627, PB1-368, and M2-31, compared with H7N9 viruses. In pathogenicity experiments, none of the Korean H7 isolates tested induced clinical signs in domestic ducks or mice. Furthermore, while they replicated poorly, with low titers (10 0.7–1.3EID50/50 µl) in domestic ducks, all five viruses replicated well (up to 7–10 dpi, 10 0.7–4.3EID50/50 µl) in the lungs of mice, without prior adaptation. Our results suggest that domestic Korean viruses were transferred directly from wild birds through at least two independent introductions. Our data did not indicate that wild birds carried poultry viruses between Korea and China, but rather, that wild-type H7 viruses were introduced several times into different poultry populations in eastern Asia.  相似文献   

13.
During recent years, extensive amounts of data have become available regarding influenza A virus (IAV) in wild birds in northern Europe, while information from southern Europe is more limited. Here, we present an IAV surveillance study conducted in western Portugal 2008–2009, analyzing 1653 samples from six different species of waterfowl, with the majority of samples taken from Mallards (Anas platyrhynchos). Overall 4.4% of sampled birds were infected. The sampling results revealed a significant temporal variation in the IAV prevalence, including a pronounced peak among predominantly young birds in June, indicating that IAV circulate within breeding populations in the wetlands of western Portugal. The H10N7 and H9N2 subtypes were predominant among isolated viruses. Phylogenetic analyses of the hemagglutinin and neuraminidase sequences of H10N7, H9N2 and H11N3 virus showed that sequences from Portugal were closely related to viral sequences from Central Europe as well as to IAVs isolated in the southern parts of Africa, reflecting Portugal’s position on the European-African bird migratory flyway. This study highlights the importance of Portugal as a migratory crossroad for IAV, connecting breeding stationary waterfowl with birds migrating between continents which enable transmission and spread of IAV.  相似文献   

14.
A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV) in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV). We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA) diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event), as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.  相似文献   

15.
Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies.  相似文献   

16.
Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.  相似文献   

17.
The prevalence of influenza A virus infection, and the distribution of different subtypes of the virus, were studied in 1529 ducks and 1213 gulls shot during ordinary hunting from August to December in two consecutive years, 2006 and 2007, in Norway. The study was based on molecular screening of cloacal and tracheal swabs, using a pan-influenza A RT-PCR. Samples found to be positive for influenza A virus were screened for the H5 subtype, using a H5 specific RT-PCR, and, if negative, further subtyped by a RT-PCR for the 3'-part of the hemagglutinin (HA) gene, encompassing almost the entire HA2, and the full-length of the neuraminidase (NA) gene, followed by sequencing and characterization. The highest prevalence (12.8%) of infection was found in dabbling ducks (Eurasian Wigeon, Common Teal and Mallard). Diving ducks (Common Goldeneye, Common Merganser, Red-breasted Merganser, Common Scoter, Common Eider and Tufted Duck) showed a lower prevalence (4.1%). In gulls (Common Gull, Herring Gull, Black-headed Gull, Lesser Black-headed Gull, Great Black-backed Gull and Kittiwake) the prevalence of influenza A virus was 6.1%. The infection prevalence peaked during October for ducks, and October/November for gulls. From the 16 hemagglutinin subtypes known to infect wild birds, 13 were detected in this study. Low pathogenic H5 was found in 17 dabbling ducks and one gull.  相似文献   

18.
There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.  相似文献   

19.
Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness.The highly pathogenic H5N1 influenza viruses that emerged over a decade ago in southern China have evolved into over 10 distinct phylogenetic clades based on their hemagglutinin (HA) genes. The viruses have spread to over 63 countries and to multiple mammalian species, including humans, resulting in 498 cases of infection and 294 deaths by 6 May 2010 according to the World Health Organization (WHO) (http://www.who.int). To date, none of the different H5N1 clades has acquired the ability to consistently transmit among mammalian species. The currently circulating H5N1 viruses are unique in that they continue to circulate in avian species. All previous highly pathogenic H5 and H7 viruses have naturally “burned out” or were stamped out because of their high pathogenicity in domestic poultry. While there is growing complacency about the potential of H5N1 “bird flu” to attain consistent transmissibility in humans and develop pandemicity, it is worth remembering that we have no knowledge of the time that it took the 1918 Spanish, the 1957 Asian, the 1968 Hong Kong, and the 2009 North American pandemics to develop their pandemic potentials. We may therefore currently be witnessing in real time the evolution of an H5N1 pandemic influenza virus.H5N1 avian influenza viruses (AIVs) were first detected in sick geese in Guangdong province in 1996, and both nonpathogenic and highly pathogenic (HP) H5N1 viruses were described (18). In 1997, H5N1 reassortant viruses that derived the HA gene from A/goose/Guangdong/1/96 (GS/GD/1/96)-like viruses and the other genes from H6N1 and/or H9N2 viruses caused lethal outbreaks in poultry and humans in Hong Kong (6, 7). Since then, long-term active surveillance of influenza viruses in domestic poultry has been performed, and multiple subtypes of influenza viruses have been detected in chickens and ducks in China (16, 19, 37). H5N1 influenza viruses have been repeatedly detected in apparently healthy ducks in southern China since 1999 (4, 13) and were also detected in pigs in Fujian province in 2001 and 2003 (39).Since the beginning of 2004, there have been significant outbreaks of H5N1 avian influenza virus infection involving multiple poultry farm flocks in more than 20 provinces in China (2). H5N1 viruses resulted in the deaths of millions of domestic poultry, including chickens, ducks, and geese, as the result of infection or of culling and the deaths of thousands of wild birds (5, 20). Thirty-eight human cases of HP H5N1 infection with 25 fatalities have been associated with direct exposure to infected poultry (WHO; http://www.who.int). Since 2004, the vaccination of domestic poultry has been used for the control of HP H5N1 influenza virus in China. While this strategy has been effective at reducing the incidence of HP H5N1 in poultry and at markedly reducing the number of human cases, it is impossible to vaccinate every single bird due to the enormous poultry population. Outbreaks of H5N1 influenza virus still continue to occur in poultry although at a reduced frequency.A previous study by Smith et al. reported that a “Fujian-like” H5N1 influenza virus emerged in late 2005 and predominated in poultry in southern China (26). Those authors suggested that vaccination may have facilitated the selection of the “Fujian-like” sublineage. Here, we analyzed 51 representative H5N1 viruses that were isolated from wild birds, domestic poultry, and humans from 2004 to 2009 in China and described their genetic evolution and antigenicity profiles. Our results indicate that H5N1 influenza viruses in southern China, including the “Fujian-like” viruses, are complicated reassortants, which could be well protected against by GS/GD/1/96 virus-based vaccines. We documented the emergence of the latest variant of H5N1 (A/chicken/Shanxi/2/06 [CK/SX/2/06]) that broke through existing poultry vaccines. We show that this variant is less pathogenic in mice and ducks than the earlier strains and propose that the variant was not selected by the use of vaccines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号