首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient in vitro transformation and plant regeneration protocol was developed for Terminalia bellerica using cotyledonary node cultures. High-frequency shoot bud proliferation was obtained on medium with 6-benzyladenine. Significant improvements in plant regeneration occurred using elevated levels of CuSO4 and CoCl2. Rooting occurred on a half-strength Murashige and Skoog medium containing indole-3-butyric acid. The rooted plants were acclimatized and transferred to field conditions. The genetic fidelity of the regenerated plants was confirmed using randomly amplified polymorphic DNA analysis. An Agrobacterium-mediated genetic transformation protocol was developed for Terminalia by varying several factors which influence T-DNA delivery. Southern blot analysis of regenerated plants confirmed selectable marker gene integration in transgenic plants. This transformation protocol can be utilized for further genetic manipulation of T. bellerica.  相似文献   

2.
Many studies have examined the effects of ethylene on in vitro plant growth and development, often with controversial results. Ethylene accumulates in culture vessels due to both the release from the tissues and the physical entrapment due to the need for closed containers. This hormone has several effects on plant regeneration, depending on the plant species and even the cultivar. A prerequisite for ethylene use for in vitro culture is thus to formulate a specific protocol for the genotype of interest. In rice, ethylene is a key regulator of adaptation strategies to low oxygen environments. In particular, the SUBMERGENCE1A (SUB1A) gene, when present, drives the acclimation response which when activated by ethylene produced by submerged plants leads to adaptation through reduced plant growth and ethanolic fermentation enhancement. This gene is restricted to a limited number of rice for which a very specific response to ethylene is expected, whatever the source. This paper reports the regeneration differences between a SUB1A rice landrace (indica-aus, FR13A) and a non-SUB1A variety (japonica, Nipponbare). Our results suggest that regeneration protocols with exogenous ethylene precursors supply are required for the FR13A rice harbouring the SUB1A gene to overcome the problem of low regeneration efficiency.  相似文献   

3.
A successful in vitro Agrobacterium-mediated transformation protocol was developed for Mimulus aurantiacus, a model species for ecological and evolutionary genetics and a promising ornamental plant. Three binary vectors were tested, each containing the hptII selectable marker gene and one of the reporter genes: gusA, EGFP or ZsGreen, all of them under CaMV 35S promoter. Genetic transformation was achieved through 4 days of co-cultivation of leaf, petiole and hypocotyl explants with Agrobacterium tumefaciens strain LBA 4404. Explants produced transformed callus tissue on solid modified Murashige and Skoog medium supplemented with 1 mg L?1 6-benzylaminopurine, 0.5 mg L?1 1-naphthaleneacetic acid, 30 g L?1 sucrose and 20 or 50 mg L?1 hygromycin B. All three reporter genes were expressed in callus tissue but the intensity of expression gradually decreased during further plant development. The new reporter gene ZsGreen proved suitable for plant transformation experiments since very intense and bright fluorescence was detected. Out of 1,760 co-cultured explants, 110 plants were regenerated and all of them were found to be PCR positive for the selection and/or reporter genes. Chemiluminescent Southern blot analysis revealed that 91 % of the regenerated plants (100 T0 plants) contained T-DNA integrated in their genome. Transformation efficiency varied from 1.4 to 23.3 % for hypocotyl and petiole explants, respectively. Integration of some backbone sequences in plant genomes was confirmed in 75.3 % of T0 plants. Using this protocol, stable transformants expressing selectable marker gene hptII and one of the reporter genes (gusA, ZsGreen or EGFP) were obtained in 4–5 months.  相似文献   

4.
Induction of Agrobacterium vir genes is one of the basic requirements for T-DNA transfer and integration into plant genome. Here we study the vir gene induction by various explant types of eggplant in order to develop a transformation protocol with improved efficiency using binary vector constructs - harbouring a hygromycin phosphotransferase gene (hpt) as a selection marker and a gfp:gus fusion gene as a reporter. A protocol for efficient Agrobacterium-mediated transformation of eggplant (Solanum melongena L cv Pusa Purple Long) has been developed by optimizing factors. Leaf, cotyledon and hypocotyl explants were tested for their ability to induce Agrobacterium vir-genes using a VirE:lacZ fusion construct and were shown to be poor inducers of the same. Addition of 100 µM acetosyringone during infection and co-cultivation steps of transformation could enhance the vir gene induction as well as a 2–3 fold increase in transformation frequency. Transformed explants showed the expression of reporter genes gus and gfp. The transgenics were analysed by peR and Southern blot hybridization, and were shown to have T-DNA integrated into their genome. The data suggest that eggplant is a relatively poor inducer of Agrobacterium vir genes, probably due to minimal phenolic production, and by modulating vir gene induction using phenolics like acetosyringone eggplant transformation can be improved.  相似文献   

5.
Virus-induced gene silencing (VIGS) is used to down-regulate endogenous plant genes. VIGS efficiency depends on viral proliferation and systemic movement throughout the plant. Although tobacco rattle virus (TRV)-based VIGS has been successfully used in petunia (Petunia?×?hybrida), the protocol has not been thoroughly optimized for efficient and uniform gene down-regulation in this species. Therefore, we evaluated six parameters that improved VIGS in petunia. Inoculation of mechanically wounded shoot apical meristems induced the most effective and consistent silencing compared to other methods of inoculation. From an evaluation of ten cultivars, a compact petunia variety, 'Picobella Blue', exhibited a 1.8-fold higher CHS silencing efficiency in corollas. We determined that 20 °C day/18 °C night temperatures induced stronger gene silencing than 23 °C/18 °C or 26 °C/18 °C. The development of silencing was more pronounced in plants that were inoculated at 3–4 versus 5 weeks after sowing. While petunias inoculated with pTRV2-NbPDS or pTRV2-PhCHS showed very minimal viral symptoms, plants inoculated with the pTRV2 empty vector (often used as a control) were stunted and developed severe necrosis, which often led to plant death. Viral symptoms were eliminated by developing a control construct containing a fragment of the green fluorescent protein (pTRV2-sGFP). These optimization steps increased the area of chalcone synthase (CHS) silencing by 69 % and phytoene desaturase (PDS) silencing by 28 %. This improved VIGS protocol, including the use of the pTRV2-sGFP control plants, provides stronger down-regulation for high-throughput analyses of gene function in petunia.  相似文献   

6.
An efficient protocol for genetic transformation of rutabaga (Brassica napus var. napobrassica) cultivar ??American Purple Top Yellow?? was developed by optimizing several factors influencing gene delivery and plant regeneration. A two-step regeneration protocol, adapted from canola, was optimal for rutabaga regeneration using hypocotyl explants. Transient expression studies monitored by histochemical ??-glucuronidase (GUS) assays indicated that several factors, including Agrobacterium tumefaciens strain, cocultivation time, and cocultivation medium, affected gene delivery. For stable transformation, precultured hypocotyl explants were cocultivated with Agrobacterium cells on sterilized filter paper overlaid on callus induction medium containing 100???M acetosyringone for 6?d under a 16-h photoperiod. Selection and regeneration of transformed cells were conducted on media containing 50?mg?l?1 kanamycin and 250?mg?l?1 Timentin. Using this protocol, GUS- and PCR-positive transformants were obtained from 3.2 to 4.2?% of hypocotyl explants inoculated with each of the three Agrobacterium strains after 3?C5?mo. Most transformants exhibited a normal phenotype. Southern blot analysis confirmed stable integration of the gusA transgene in T0 plants.  相似文献   

7.
8.
The causal agent of diseases in many economically important plants is attributed to the xylem-limited bacterium Xylella fastidiosa. The detection of this plant pathogen has been hampered due to its difficult isolation and slow growth on plates. Nearly complete nucleotide sequences of the 16S rRNA gene and partial sequences of the gyrB gene were determined for 18 strains of X. fastidiosa isolated from different plant hosts. A phylogenetic analysis, based on gyrB, grouped strains in three clusters; grape-isolated strains formed one cluster, citrus-coffee strains formed another cluster, and a third cluster resulted from all other strains. Primer pairs designed for the 16S rRNA and gyrB genes were extensively searched in databases to verify their in silico specificity. Primer pairs were certified with 30 target and 36 nontarget pure cultures of microorganisms, confirming 100% specificity. A multiplex PCR protocol was developed and its sensitivity tested. Sequencing of PCR products confirmed the validity of the multiplex PCR. Xylella fastidiosa was detected in field-collected plants, disease vector insects, and nonsymptomatic but infected plants. Specific detection of X. fastidiosa may facilitate the understanding of its ecological significance and prevention of spread of the disease.  相似文献   

9.
Digoxigenin is derived from a plant steroid hormone digoxin found in the plants Digitalis sp. Digoxigenin has been used successfully in labeling nucleic acids. In this experiment we optimized minimum probe requirement for a nonradioactive digoxigenin-based gene detection system in the model plant Arabidopsis thaliana. We showed that 1 μL of labeled probe was sufficient to hybridize onto 1–10 μg of target plasmid DNA. We also examined the sensitivity of labeled probe and showed that 2 μL of labeled probe was not able to hybridize with 1 μg of target DNA, although 2 μL of labeled probe was able to detect target DNA ranging from 2 to 10 μg. To test the efficacy of our optimization protocol, we used 1 μL of labeled plasmid DNA pU16893 harboring an Arabidopsis housekeeping gene elongation factor-1 and showed that the elongation factor-1 gene could be detected in Arabidopsis genome under various environmental conditions. This paper describes a nonradioactive in situ hybridization technique to detect nucleic acids in plants.  相似文献   

10.
In the absence of specialized mobile immune cells, plants utilize their localized programmed cell death and Systemic Acquired Resistance to defend themselves against pathogen attack. The contribution of a specific Arabidopsis gene to the overall plant immune response can be specifically and quantitatively assessed by assaying the pathogen growth within the infected tissue. For over three decades, the hemibiotrophic bacterium Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) has been widely applied as the model pathogen to investigate the molecular mechanisms underlying the Arabidopsis immune response. To deliver pathogens into the leaf tissue, multiple inoculation methods have been established, e.g., syringe infiltration, dip inoculation, spray, vacuum infiltration, and flood inoculation. The following protocol describes an optimized syringe infiltration method to deliver virulent Psm ES4326 into leaves of adult soil-grown Arabidopsis plants and accurately screen for enhanced disease susceptibility (EDS) towards this pathogen. In addition, this protocol can be supplemented with multiple pre-treatments to further dissect specific immune defects within different layers of plant defense, including Salicylic Acid (SA)-Triggered Immunity (STI) and MAMP-Triggered Immunity (MTI).  相似文献   

11.
Amplified fragment length polymorphism (AFLP) is a powerful fingerprinting technique that is widely applied in ecological and population genetic studies. However, its routine use has been limited by high costs associated with the optimization of fluorescently labelled markers, especially for individual study systems. Here we develop a low-cost AFLP protocol that can be easily transferred between distantly related plant taxa. Three fluorescently labelled EcoRI-primers with anchors that target interspecifically conserved genomic regions were used in combination with a single non-labelled primer in our AFLP protocol. The protocol was used to genotype one gymnosperm, two monocot and three eudicot plant genera representing four invasive and four native angiosperm species (Pinus pinaster (Pinaceae), Pennisetum setaceum and Poa annua (Poaceae), Lantana camara (Verbenaceae), Bassia diffusa (Chenopodiaceae), Salvia lanceolata, Salvia africana-lutea, and Salvia africana-caerulea (Lamiaceae)). Highly polymorphic and reproducible genotypic fingerprints (between 37–144 polymorphic loci per species tested) were obtained for all taxa tested. Our single protocol was easily transferred between distantly related taxa. Measures of expected heterozygosity ranged from 0.139 to 0.196 for P. annua and from 0.168 to 0.272 for L. camara which compared well with previously published reports. In addition to ease of transferability of a single AFLP protocol, our protocol reduces costs associated with commercial kits by almost half. The use of highly conserved but abundant anchor sequences reduces the need for laborious screening for usable primers that result in polymorphic fingerprints, and appears to be the main reason for ease of transferability of our protocol between distantly related taxa.  相似文献   

12.
13.
Despite numerous advantages of the many tissue culture-independent hairy root transformation protocols, the process is often compromised in the initial in vitro culture stage where inability to maintain high humidity and the delivery of nourishing culture medium decrease cellular morphogenesis and organ formation efficiency. Ultimately, this influences the effective transfer of produced plantlets during transfer from in vitro to in vivo conditions, where low survival rates occur during the acclimation period. We have developed an intermediate protocol for Agrobacterium rhizogenes transformation in Glycine species by combining a two-step in vitro and in vivo process that greatly enhances the efficiency of hairy root formation and which simplifies the maintenance of the transformed roots. In this protocol, cotyledonary nodes of Glycine max and Glycine canescens seedlings were infected by A. rhizogenes K599 carrying a reporter gene construct constitutively expressing green fluorescent protein (GFP). Glass containers containing sand and nutrient solution were employed to provide a moist clean microenvironment for the generation of hairy roots from inoculated seedlings. Transgenic roots were then noninvasively identified from nontransgenic roots based on the detection of GFP. Main roots and nontransgenic roots were removed leaving transgenic hairy roots to support seedling development, all within 1 mo of beginning the experiment. Overall, this protocol increased the transformation efficiency by more than twofold over traditional methods. Approximately 88% and 100% of infected plants developed hairy roots from G. max and G. canescens, respectively. On average, each infected plant produced 10.9 transformed hairy roots in G. max and 13–20 in G. canescens. Introduction of this simple protocol is a significant advance that eliminates the long and genotype-dependent tissue culture procedure while taking advantage of its optimum in vitro qualities to enhance the micropropagation rate. This research will support the increasing use of transient transgenic hairy roots for the study of plant root biology and symbiotic interactions with Rhizobium spp.  相似文献   

14.
Plant transformation has emerged as an important tool to integrate foreign genes in the plant genome to modify the plants for desired traits. Though many techniques of plant transformation are available; getting single copy transgenic events and cost associated remains a big challenge. Thus Agrobacterium-mediated transformation remains the method of choice due to multiple advantages. In the present work a tissue culture free protocol of Agrobacterium-mediated transformation was optimized in safflower, an oil seed crop recalcitrant to transformation. As a proof of concept we selected pCAMBIA2300 gene cassette containing Arabidopsis specific delta 15 desaturase (FAD3) downstream to truncated seed specific promoter beta-conglycinin and optimized tissue culture free protocol of Agrobacterium-mediated transformation using embryos as explants. Addition of silwet L-77, sonication treatment, vacuum infiltration in infection medium and use of paper wicks in co-cultivation period increased the transformation efficiency to 19.3%. Further, success in transformation was confirmed via product accumulation in 21 independent transgenic events wherein oil in transformed seeds showed significant accumulation of alpha-linolenic acid (ALA; 18:3; n3) which is generated from linoleic acid (LA; 18:2; n3) in a FAD3 catalyzed reaction. The present protocol can be utilized to produce transgenic safflower with different desired characters.  相似文献   

15.
Improved drought tolerance is always a highly desired trait for agricultural plants. Significantly increased drought tolerance in Arabidopsis thaliana (Columbia-0) has been achieved in our work through the suppression of ESKMO1 (ESK1) gene expression with small-interfering RNA (siRNA) and overexpression of CBF genes with constitutive gene expression. ESK1 has been identified as a gene linked to normal development of the plant vascular system, which is assumed directly related to plant drought response. By using siRNA that specifically targets ESK1, the gene expression has been reduced and drought tolerance of the plant has been enhanced dramatically in the work. However, the plant response to external abscisic acid application has not been changed. ICE1, CBF1, and CBF3 are genes involved in a well-characterized plant stress response pathway, overexpression of them in the plant has demonstrated capable to increase drought tolerance. By overexpression of these genes combining together with suppression of ESK1 gene, the significant increase of plant drought tolerance has been achieved in comparison to single gene manipulation, although the effect is not in an additive way. Accompanying the increase of drought tolerance via suppression of ESK1 gene expression, the negative effect has been observed in seeds yield of transgenic plants in normal watering conditions comparing with wide type plant.  相似文献   

16.
In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (> 98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences.  相似文献   

17.
Transient expression of foreign genes by Agrobacterium infiltration is a versatile technique that can be used as a rapid tool for functional protein production in plants. A reproducible protocol of large-scale production of foreign proteins via the novel plant transient expression system in Pisum sativum L. was established in our study. Non-detached plants from soil-independent culture were used as the target organ, and vacuum infiltrating mediated by Agrobacterium tumefaciens harboring green fluorescent protein (GFP) gene was performed. Step-by-step optimization was performed and showed that the quality of plant material as well as agro-infiltration conditions were the major factors influencing the gene expression. Monitoring the transient GFP expression daily, the highest expression level was achieved on the 8th day post-infiltration. Evidence of anti-acidic fibroblast growth factor-single chain variable fragment (anti-aFGF-scFv) gene expression in pea seedling was also achieved using agro-mediated vacuum infiltration system. Our work proves that the system is suitable for the largescale production of pharmaceutical proteins. The in planta infiltration system described here provides a powerful tool to explore easily gene expression in Pisum sativum L. avoiding tissue culture steps and the labor-intensive generation of transgenic plants.  相似文献   

18.
19.
20.
A robust, reproducible method of Agrobacterium-mediated transformation was developed for Lupinus mutabilis Sweet (tarwi), a large-seeded Andean legume. Initially, a regeneration and transformation protocol was developed using a plasmid which contained a bifunctional fusion gene conferring both β-glucuronidase (gus) and neomycin phosphotransferase activities, under the control of a constitutive 35S35SAMV promoter. The tissue explants consisted of longitudinal slices from embryonic axes of imbibed, mature seed. Using a series of tissue culture media for cocultivation, shoot initiation, shoot elongation, and rooting, kanamycin-resistant transgenic plants were recovered from approximately 1% of the explants. This transformation protocol was further used with a construct that contained the human adenosine deaminase (hADA) gene under the control of a legumin seed-specific promoter, also with a kanamycin resistance cassette for chemical selection. Changes made during the course of this study, which included adjustments to the antibiotic concentration during the shoot elongation and rooting phases plus the incorporation of techniques to improve ventilation in the tissue culture system, resulted in major improvements in shoot quality and, most significantly, rooting. The outcome was an increased frequency of transgenic plant recovery (7.4%), with a low (9.6%) rate of plants that escaped selection. The inheritance of the hADA gene was documented and showed the expected Mendelian segregation pattern. The produced hADA protein was a fully functional enzyme and localized only in the seed, as expected. Thus, this legume species is an excellent candidate for a nonfood plant host platform for the production of plant-made proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号