首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytomixis is the widespread natural process of intercellular interaction which is characteristic for vegetative and generative tissues in both normal and pathological conditions. The origin significance and genetic control cytomixis still remain not completely clear. The popularity of view of the pathological nature of cytomixis based on its peculiar plants with genetic instability and impaired homeostasis. In the genetic control of cytomixis seem to be involved meiotic genes which are responsible for segregation and organization of chromosomes. Their activity is modified by environmental factors through signal transduction. It is assumed via cytomixis, from one side, the informational contact can be reached and meiosis and gametogenesis are synchronized, with another, increase of the genetic variety and level of the heterozygosis of microsporocytes. The activity of cytomixis varies over wide limits. The greatest influence on its activity have mutagenesis hybridization and polyploidy. In this context cytomixis can fulfill the function of cell selection which is activated by exceeding of the threshold level of the microsporocyte damages (or genetical disbalance).  相似文献   

2.
3.
The phenomenon of intercellular migration of nuclei in plant tissues (cytomixis) was discovered over a century ago, which has been followed by numerous attempts to clarify the essence of this process as well as to determine its causes and consequences. Most attention of researchers has been paid to cytomixis in microsporogenesis, since the transfer of part of genetic material between microsporocytes may influence the ploidy level of the produced pollen and, presumably, have an evolutionary significance. This review compiles the data on cytological pattern of cytomixis and proposes a scheme as to how cytomictic channels are formed and function in angiosperms. The prevalence of cytomixis in different plant taxa is analyzed using the published data. The causes, mechanisms, and consequences of the nuclear migration between cells in plant tissues are discussed.  相似文献   

4.
Comparative cytological analysis of intra- and intertissular cytomictic interactions in the microsporogenesis of mono- and dicotyledonous plants has been performed for two cellular systems: the microsporocytes and the tapetum. Cytomixis was shown to be more common for intratissular interactions, and cytomixis in the tapetum exhibited taxon-specific features, both structural and temporal. Nuclear migration in the microsporocytes mostly occurred during the zygotene–pachytene and exhibited certain synchrony with cytomixis in the tapetum. Intertissular cytomictic interactions (between the tapetum and the microsporocytes) were detected only in monocotyledonous plant anthers. Intertissular interactions may reflect more intense competition for space between the tapetum and the microsporocytes during the differentiation of anther tissues. The polyploid nuclei of the tapetum and the syncytia are powerful acceptors that can compete with the microsporocytes and attract the chromatin during translocation of the latter. The absence of intertissular interactions in dicotyledonous plants may be indicative of a better balance between the processes of differentiation of somatic and generative tissues of the microsporangium as compared to monocotyledonous plants.  相似文献   

5.
百合早前期花粉母细胞经腺苷三磷酸酶反应处理后,一部分经过锇酸后固定和铀染色,一部分不经锇酸后固定和铀染色,其余的经锇酸固定,但不经铀染色,在此三种情况下,细胞质膜和染色质中都出现有致密的,电子不通透的沉淀。进一步的X-射线微区分析表明这些沉淀物中含有一定量的铅。X-射线微区分析结果也表明核膜和胞间连丝通道内部的酶反应沉淀中也含有铅,并且质膜、染色质和胞间连丝通道中酶反应沉淀中的铅较为丰富,细胞融合期染色质酶反应沉淀物中的铅含量较高,进入粗线期后,酶反应沉淀物中铅的含量下降。本研究结果表明百合早前期花粉母细胞的质膜、染色质、核膜及胞间连丝通道内部的确具有ATP酶活性;ATP酶在细胞融合过程中可能起重要作用。  相似文献   

6.
The efficiencies of the induction of cytomixis in microsporogenesis by thermal stress are compared in tobacco (N. tabacum L.) and barley (H. distichum L.) It has been shown that different thermal treatment schedules (budding tobacco plants at 50°C and air-dried barley grains at 48°C) produce similar results in the species: the frequency of cytomixis increases, and its maximum shifts to later stages of meiosis. However, the species show differences in response. The cytomixis frequency increase in tobacco is more pronounced, and its maximum shifts from the zygotene–pachytene stages of meiotic prophase I to prometaphase–metaphase I. Later in the meiosis, aberrations in chromosome structure and meiotic apparatus formation typical of cytomixis are noted, as well as cytomixis activation in tapetum cells. Thermal stress disturbs the integration of callose-bearing vesicles into the callose wall. Cold treatment at 7°C does not affect cytomixis frequency in tobacco microsporogenesis. Incubation of barley seeds at 48°C activates cytomixis in comparison to the control, shifts its maximum from the premeiotic interphase to zygotene, and changes the habit of cytomictic interactions from pairwise contacts to the formation of multicellular clusters. Thermal treatment induces cytomictic interactions within the tapetum and between microsporocytes and the tapetum. However, later meiotic phases show no adverse consequences of active cytomixis in barley. It is conjectured that heat stress affects callose metabolism and integration into the forming callose wall, thereby causing incomplete closure of cytomictic channels and favoring intercellular chromosome migration at advanced meiotic stages.  相似文献   

7.
Cytomixis is a common phenomenon observed in meiotic cells such as anther which is influenced by various factors. Use of pesticides is a common practice in agriculture. However, it is not known whether pesticides can induce cytomixis in plant cells and induce genetic variation. To understand this, the present study was planned to assess the cytomixis and syncytes behaviors in PMCs of Pisum sativum L. Seeds of P. sativum (Family: Fabaceae) were treated with different concentrations of commonly used pesticides methomyl (ME), imbraclaobrid (IM) and clethodim (CL). Seeds were treated with various concentrations (0.1, 0.2, 0.3, 0.4 and 0.5% of ME, IM and CL prepared in water) for 1 and 3 h. Effect of pesticides on pollen fertility, frequency of cytomixis, and kind of cytomixis cells was assessed. In the cytomixis cells, the cytomictic channel (CC) and direct fusion (DF), and various stages of meiosis (PI, MI, AI and TI) with cytomixis cells were observed. In addition, frequency of syncytes cell and their various stages of meiosis I (PI, MI, AI and TI) in pollen mother cells (PMCs) was assessed. During the microsporogenesis in P. sativum, the occurrence of cytomixis and syncytes at various stages of meiosis I were seen. The formation of cytoplasmic channels and direct fusing of pollen mother cells (PMCs) were both seen to cause cytomixis, with the former being more common than the latter. The percentage of PMCs with cytomixis and syncytes cells increased with increase in the concentration of pesticides. The result of the present investigation indicates that commonly used pesticides ME, IM, and CL have a significant effect on pollen fertility, frequency of cytomixis, and kind of cytomixis cells, the cytomictic channel (CC) and direct fusion (DF), in addition, frequency of syncytes cell and their various stages of meiosis I (PI, MI, AI and TI) in pollen mother cells (PMCs) on P. sativum.  相似文献   

8.
We report the occurrence of cytomixis in wild populations of Himalayan poppy (Meconopsis aculeata Royle), which is considered to be an important and threatened medicinal plant growing in the high hills of the Himalayas. The impact of cytomixis on meiotic behaviour, reduced pollen viability and heterogeneous-sized pollen grains was also studied. Cytological studies in the seven wild populations from the high hills of Himachal Pradesh revealed that all the Himalayan populations exist uniformly at the tetraploid level (2n=56) on x=14. The phenomenon of chromatin transfer among the proximate pollen mother cells (PMCs) in six populations caused various meiotic abnormalities. Chromatin transfer also resulted in the formation of coenocytes, aneuploid, polyploid and anucleated PMCs. Among individuals that showed chromatin transfer, chromosome stickiness and interbivalent connections were frequently observed in some PMCs. The phenomenon of cytomixis in the species seems to be directly under genetic control; it affects the meiotic course considerably and results in reduced pollen viability.  相似文献   

9.
During a cytotaxonomical study of a Kuwaiti diploid (2 n  = 26) population of Diplotaxis harra (Forssk.) Boiss (Brassicaceae), cytomixis and aneuploidy were found in 1.5% and 7.8% of the pollen mother cells (PMCs), respectively. Cytomictic cells revealed wide variability as far as the number of involved PMCs and their stage of division were concerned. The cytoplasmic channels, which were of different sizes, contained migrating chromosomes in a few cases. In some PMCs, the location of some of the chromosomes was clearly indicative of an imminent migration from a donor to its attached recipient cell. At metaphase I and anaphase I, PMCs showed variable degree of chromosomal transfer. In addition to a genetic control of the phenomenon, stress factors such as high temperature or drought in certain periods of the growing season may have contributed to the incidence of cytomixis in the material. A possible relationship between cytomixis and detected aneuploid PMCs, as well as a reconsideration of an evolutionary role of cytomixis is discussed.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 169–175.  相似文献   

10.
用标准的磷酸铅沉淀的细胞化学方法,对百合花粉母细胞间染色质穿壁运动期间及其前后三个时期中的腺苷三磷酸酶(ATP 酶)活性进行了超微结构的定位。结果表明:(1)在穿壁前,ATP 酶活性主要定位于质膜、胞间连丝及细胞间隙;在内质网、高尔基体、质体和某些局部的基质(groundplasm)中,也表现有 ATP 酶活性反应的产物;但在染色质和核仁中,一般都没有这种反应。(2)在穿壁时,染色质从一个细胞穿壁转移到另一个相邻细胞,同时看到染色质和核仁内出现密集的 ATP 酶活性反应产物;在内质网和高尔基体的腔内以及质体的片层上也产生明显的 ATP 酶活性反应;而在质膜、胞间连丝及细胞间隙内 ATP 酶活性明显降低,甚至看不到明显的活性反应。(3)在穿壁后,质膜及细胞间隙中又产生明显的 ATP 酶活性反应产物,但核内染色质上的 ATP 酶活性则显著降低,而核仁内则仍有较高的活性。同前二个时期一样,内质网、高尔基体和质体上的 ATP 酶仍表现明显的活性反应。最后讨论了三个不同发育时期 ATP 酶活性及其分布部位的改变与染色质胞间转移的关系。  相似文献   

11.
UV and gamma irradiation of barley seedlings induces an increase in the number of various pathologies in the male reproductive system of plants. The majority of cytological abnormalities are rather nonspecific. The main type of the observed pathologies of microsporogenesis is cytomixis, whose activation correlates with a callose hypersecretion in microsporocyte walls. A negative correlation between cytomixis and the sterility of microspores (in the case of gamma irradiation) or the sterility of mature pollen grains (in the case of UV-B irradiation) is revealed. It is supposed that cytomixis represents a kind of a premeiotic cell selection in plants characterized by an intraorganismic genetic heterogeneity (mosaics). The novelty of the idea is that the cytopathology that accompanies cytomixis is considered as a mechanism of the induced death of genetically imbalanced or nonrepairable cells, which is intended to keep the fertility of a male reproductive system. The activation of this mechanism has a threshold character.  相似文献   

12.
Standard lead precipitation procedures have been used to examine the localization of ATPase activity during cytomixis in pollen mother cells of Lilium davidii var. willmottiae (Wilson) Roffill. Before cytomixis, cells at this stage of development show ATPase activity on plasma membrane, in the endoplasmic reticulum, dictyosomes, plastids, plasmodesmata, and in part of the groundplasm; however, there is no ATPase activity on the chromatin and nucleolus. During cytomixis, the chromatin substance begin to transfer from one cell to an adjacent cell, reaction product indicating ATPase activity is observed associated with the chromatin and nucleolus. ATPase activity is also found with the cistenae of both endoplasmic reticulum and dictyosomes, and some plastids. There is no deposition of ATPase reaction product associated with the plasm membrane and intercellular spaces. After cytomixis, the chromatin is little or no deposition of enzyme reaction product. ATPase activity, however, is consistenlly found within the intercellular space and on the plasm membrane, and also occur in the endoplasmic reticulum, dictyosome and plastid. The presence or absence of ATPase activity in the cell structure of pollen mother cells before, during or after eytomixis is discussed in relation to the active uptake or export of water for short-distance transport. It is also suggested that the intensive ATPase activity in the nucleus during cytomixis of pollen mother cells is evidence for a transport system involved in the active movement of the intercellular migrating ebromatin substance.  相似文献   

13.
The migration of nuclei between plant cells (cytomixis) is a mysterious cellular phenomenon frequently observable in the male meiosis of higher plants. Cytomixis attracts attention because of unknown cellular mechanisms underlying migration of nuclei and its potential evolutionary significance, since the genetic material is transferred between the cells that form pollen. Although cytomixis was discovered over a century ago, the advance in our understanding of this process has been rather insignificant because of methodological difficulties. The data that allowed for a new insight into this phenomenon were obtained by examining the migrating nuclei with electron and confocal laser microscopy, immunostaining, and fluorescence in situ hybridization. As has been shown, the chromatin migrating between cells is surrounded by an undamaged nuclear membrane. Such chromatin does not undergo heterochromatization and contains normal euchromatin markers. The condensation degree of the migrating chromatin corresponds to the current meiotic stage, and normal structures of synaptonemal complex are present in the migrating part of the nucleus. The cells involved in cytomixis lack any detectable morphological and molecular markers of programmed cell death. It has been shown that individual chromosomes and genomes (in the case of allopolyploids) have no predisposition to the migration between cells, i.e., parts of the nucleus are involved in cytomixis in a random manner. However, the fate of migrating chromatin after it has entered the recipient cell is still vague. A huge amount of indirect data suggests that migrating chromatin is incorporated into the nucleus of the recipient cell; nonetheless, the corresponding direct evidences are still absent. No specific markers of cytomictic chromatin have been yet discovered. Thus, the causes and consequences of cytomixis are still disputable. This review briefs the recent data on the relevant issues, describes the classical and modern methodological approaches to analysis of the intercellular migration of nuclei, and discusses the problems in cytomixis research and its prospects.  相似文献   

14.
Studies have been made on the activity of two mitochondrial enzymes, Mg2+ ATPase (E.C.3.6.1.3.) and cytochrome c-oxidase (E.C.I.9.3.2.) in microsporocytes and somatic cells of anther in larch. The material for study were homogeneous fractions of microsporocytes from 15 stages of meiosis and the attendant anther somatic cells. The results have demonstrated that cells undergoing meiosis exhibit considerable mitochondrial metabolic activity. It is characterized by considerable variations in the activity level of both enzymes studied. The level and dynamics of variations of Mg2+-ATPase and cytochrome c-oxidase activity in microsporocytes are clearly different from those in the anther somatic cells. The cytochrome c-oxidase activity in microsporocytes throughout microsporogenesis is higher compared with that in the anther wall cells, whereas the Mg2+-ATPase activity in microsporocytes averagesca. one half that in the anther somatic cells The dynamics of activity variations of the enzymes under study suggests enhanced mitochondrial metabolism in the period of middle diplotene and young dyad. This result supports the thesis following from our earlier studies that the middle diplotene and young dyad constitute specific metabolic switches in microsporogenesis in larch.  相似文献   

15.
We have analysed samples from Sweden, Denmark, and Germany of six facultatively apomictic blackberry species to investigate the accordance between a taxonomy based on morphological characters on the one hand, and distribution of genetic variation estimated by DNA fingerprinting on the other hand. DNA fingerprint variation was found to be quite restricted in all species investigated. The first taxonomic group included three species related toRubus nessensis, two being characterized by one very widespread DNA fingerprint in all three countries and a few rare ones, whereas the third species differed between Sweden and Germany. The second taxonomic group included species related toR. gracilis. Two of these species exhibited very similar DNA fingerprints, whereas the third species deviated clearly. The utilization of DNA fingerprinting as a tool in taxonomy is discussed; most likely this method could become a useful complement to morphology, especially in plant groups with reduced levels of genetic recombination.  相似文献   

16.
ADP-ribosyl transferase,rearrangement of DNA,and cell differentiation   总被引:4,自引:0,他引:4  
Cell differentiation is the process by which genetic information is selectively expressed to produce cells with various morphologies and functions. The integrated changes necessary for this fundamentally important process have recently been the subject of intense study. This review will summarize data from several laboratories correlating differentiation with the activity of the enzyme ADP-ribosyl transferase and with changes in single-strand DNA breaks in various diverse eukaryotic systems. We will then discuss the implications of these observations for differentiation in general, including the possibility that rearrangement of genetic material is a widespread mechanism for controlling gene expression.  相似文献   

17.
翟启慧 《昆虫学报》1989,32(3):365-375
重组DNA技术即基因工程,亦为人们称做基因克隆或基因操作。重组DNA技术已被应用于昆虫学的基础研究和应用研究中。本文首先对重组DNA技术及基因转移技术(在昆虫学研究中与重组DNA技术配合应用的重要手段)作一简述,然后着重介绍这些技术在昆虫学研究中的应用概况。 重组DNA技术 重组DNA技术就是将DNA从细胞中分离出来,切割成片段,与载体DNA连接,形成重组DNA分子,然后导入宿主细胞,进行复制。  相似文献   

18.
Cytomixis (i.e., chromatin migration between meiocytes) has been detected in many plant species, but not in Medicago sativa spp. In the present study we report the identification of a few cytomictic alfalfa plants. Those plants, the "mother plants," were selfed and crossed with a normal control plant. Microsporogenesis analysis was performed on the mother plants, on the S(1) and F(1) plants, and on controls. The S(1) and F(1) plants, like the mother plants, were found to be cytomictic. Single or multiple chromatin bridges between two or more meiocytes were observed almost exclusively in prophase I. Some completely empty meiocytes were also observed. In addition to cytomixis, other meiotic abnormalities were found. Control plants showed an almost regular meiosis. The highest values of cytomixis were observed in the mother plants, and the lowest in their F(1) progenies. Variability of cytomixis in the F(1) plants is probably due to a heterozygotic condition of the parents for this trait. No significant correlation was found between cytomixis and pollen viability, even if the cytomictic plants showed low values of pollen viability.  相似文献   

19.
Intercellular chromatin migration (cytomixis) in the pollen mother cells of two tobacco (Nicotiana tabacum L.) lines was analyzed by electron microscopy during the first meiotic prophase. The maximal manifestation of cytomixis was observed in the pachytene. As a rule, several cells connected with one another by cytomictic channels wherein the nuclei migrated were observable at this stage. In the majority of cases, nuclei passed from cell to cell concurrently through several closely located cytomictic channels. Chromatin migrated between cells within the nuclear envelope, and its disintegration was unobservable. The nucleus, after passing through cytomictic channels into another cell, can be divided into individual micronuclei or, in the case of a direct contact with another nucleus, can form a nuclear bridge. It has been demonstrated that the chromatin structure after intracellular migration visually matches the chromatin structure before it passed through the cytomictic channel. No signs of pyknosis were observable in the chromatin of the micronuclei formed after cytomixis, and the synaptonemal complex was distinctly seen. The dynamics of changes in the nucleoli during cytomixis was for the first time monitored on an ultrastructural level. Possible mechanisms determining cytomixis are discussed and the significance of this process in plant development is considered.  相似文献   

20.
Lilium microsporocytes have specialized walls consisting of callose, presumably a polymer of β-1,3-glucose. At the termination of meiosis, the walls undergo sudden and rapid dissolution resulting in the liberation of young microspores. This event is correlated with a sharp peak in activity of β-1,3-glucanase. The activity is localized in the somatic region of the anther with less than 7.3% of the total activity associated with the microsporocytes at any time during meiosis. Thus β-1,3-glucanase appears to be an enzyme necessary to the development of meiotic cells but whose action is mediated by the surrounding somatic tissue rather than by the meiotic cells themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号