首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assignment of 1H and 13C NMR signals of a complex type triantennary asialooligosaccharide was examined using 2D selective-TOCSY–DQFCOSY and HSQC–TOCSY experiments. The 2D selective-TOCSY–DQFCOSY experiment exhibits a 2D DQFCOSY spectrum of an individual monosaccharide in the undecasaccharide, although the NMR signals of several monosaccharides in the triantennary undecasaccharide are heavily overlapped. Selective excitation of each anomeric proton signal and subsequent TOCSY experiment afforded transverse magnetization corresponding to all of the proton signals of the monosaccharide. This magnetization was then developed with the corresponding DQFCOSY pulse sequence to afford the DQFCOSY spectrum of the individual monosugars. In this case, four GlcNAc-b, -e, -j, and -h residues were excited as a mixture. In order to assign 13C signals, a conventional 2D HSQC–TOCSY spectrum was examined and compared with an unambiguous assignment of 2D selective-TOCSY–DQFCOSY thus obtained. This systematic analysis made it possible to obtain an assignment of the 1H and 13C NMR signals of the triantennary undecasaccharide. In addition, these experiments also revealed all of the glycosyl positions in the triantennary undecasaccharide.  相似文献   

2.
本文报道了组蛋白、DNA、聚核苷酸A和聚核苷酸U的~1H、~(31)P高分辨核磁共振研究新结果。 当组蛋白与DNA、聚核苷酸A或U相互作用后,核酸的质子峰变弱或消失。  相似文献   

3.
Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or "quantitative" metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis.?Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.  相似文献   

4.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

5.
While the use of 1H–13C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D 1H–13C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra.  相似文献   

6.
Summary The feasibility of assigning the backbone 15N and 13C NMR chemical shifts in multidimensional magic angle spinning NMR spectra of uniformly isotopically labeled proteins and peptides in unoriented solid samples is assessed by means of numerical simulations. The goal of these simulations is to examine how the upper limit on the size of a peptide for which unique assignments can be made depends on the spectral resolution, i.e., the NMR line widths. Sets of simulated three-dimensional chemical shift correlation spectra for artificial peptides of varying length are constructed from published liquid-state NMR chemical shift data for ubiquitin, a well-characterized soluble protein. Resonance assignments consistent with these spectra to within the assumed spectral resolution are found by a numerical search algorithm. The dependence of the number of consistent assignments on the assumed spectral resolution and on the length of the peptide is reported. If only three-dimensional chemical shift correlation data for backbone 15N and 13C nuclei are used, and no residue-specific chemical shift information, information from amino acid side-chain signals, and proton chemical shift information are available, a spectral resolution of 1 ppm or less is generally required for a unique assignment of backbone chemical shifts for a peptide of 30 amino acid residues.  相似文献   

7.
MOTIVATION: Comparative metabolic profiling by nuclear magnetic resonance (NMR) is showing increasing promise for identifying inter-individual differences to drug response. Two dimensional (2D) (1)H (13)C NMR can reduce spectral overlap, a common problem of 1D (1)H NMR. However, the peak alignment tools for 1D NMR spectra are not well suited for 2D NMR. An automated and statistically robust method for aligning 2D NMR peaks is required to enable comparative metabonomic analysis using 2D NMR. RESULTS: A novel statistical method was developed to align NMR peaks that represent the same chemical groups across multiple 2D NMR spectra. The degree of local pattern match among peaks in different spectra is assessed using a similarity measure, and a heuristic algorithm maximizes the similarity measure for peaks across the whole spectrum. This peak alignment method was used to align peaks in 2D NMR spectra of endogenous metabolites in liver extracts obtained from four inbred mouse strains in the study of acetaminophen-induced liver toxicity. This automated alignment method was validated by manual examination of the top 50 peaks as ranked by signal intensity. Manual inspection of 1872 peaks in 39 different spectra demonstrated that the automated algorithm correctly aligned 1810 (96.7%) peaks. AVAILABILITY: Algorithm is available upon request.  相似文献   

8.
13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

9.
1H NMR spectroscopy is one of the techniques whose potential is currently being explored in the emerging field of metabolomics. It is a non-targeted method, producing signals for all proton-containing chemical species. For crude plant materials the spectra are always complex, with many signals overlapping. Hence a most suitable approach for analysing them is 'metabolite fingerprinting', which is aimed at highlighting compositional similarities and exploring the overall natural variability in a population of samples. The most commonly used method for this is principal component analysis (PCA), as it allows the whole spectral trace to be analysed and the vast quantity of information to be simplified. In this paper we investigate whether there are factors which may affect the NMR spectra in a way that subsequently decreases the robustness of the metabolite fingerprinting by PCA. Imperfections in the signal registration (i.e. inconsistency of the peak position) are generally detrimental to analysing whole traces by multivariate methods. The sources of such problems are illustrated through specially designed repeatability studies using potato and tomato samples, and the analysis of a tea dataset containing many samples. Careful sample preparation can help to limit peak shifts; for instance here by attempting to control the pH of the extracts. In addition, some compounds are susceptible to interactions affecting their chemical shifts and mathematical alignment of peaks may be necessary. Lastly factors such as resolution can also affect analyses and must be carefully adjusted. Our choice of examples aims to raise awareness of potential problems. We do not question the validity of the NMR approach, but point out those areas where special care may need to be taken.  相似文献   

10.
Hyperfine 1H NMR signals of the 2Fe-2S* vegetative ferredoxin from Anabaena 7120 have been studied by two-dimensional (2D) magnetization exchange spectroscopy. The rapid longitudinal relaxation rates of these signals required the use of very short nuclear Overhauser effect (NOE) mixing times (0.5-20 ms). The resulting pattern of NOE cross-relaxation peaks when combined with previous 1D NOE results [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271] led to elucidation of the carbon-bound proton spin systems from each of the four cysteines ligated to the 2Fe-2S* cluster in the reduced ferredoxin. Additional NOE cross peaks were observed that provide information about other amino acid residues that interact with the iron-sulfur cluster. NOE cross peaks were assigned tentatively to Leu27, Arg42, and Ala43 on the basis of the X-ray coordinates of oxidized Anabaena 7120 ferredoxin [Rypniewski, W.R., Breiter, D.R., Benning, M.M., Wesenberg, G., Oh, B.-H., Markley, J.L., Rayment, I., & Holden, H. M. (1991) Biochemistry 30, 4126-4131]. Three chemical exchange cross peaks were detected in magnetization exchange spectra of half-reduced ferredoxin and assigned to the 1H alpha protons of Cys49 and Cys79 [both of whose sulfur atoms are ligated to Fe(III)] and Arg42 (whose amide nitrogen is hydrogen-bonded to one of the inorganic sulfurs of the 2Fe-2S* cluster). The chemical exchange cross peaks provide a means of extending assignments in the spectrum of reduced ferredoxin to assignments in the spectrum of the oxidized protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
NvAssign: protein NMR spectral assignment with NMRView   总被引:2,自引:0,他引:2  
MOTIVATION: Nuclear magnetic resonance (NMR) protein studies rely on the accurate assignment of resonances. The general procedure is to (1) pick peaks, (2) cluster data from various experiments or spectra, (3) assign peaks to the sequence and (4) verify the assignments with the spectra. Many algorithms already exist for automating the assignment process (step 3). What is lacking is a flexible interface to help a spectroscopist easily move from clustering (step 2) to assignment algorithms (step 3) and back to verification of the algorithm output with spectral analysis (step 4). RESULTS: A software module, NvAssign, was written for use with NMRView. It is a significant extension of the previous CBCA module. The module provides a flexible interface to cluster data and interact with the existing assignment algorithms. Further, the software module is able to read the results of other algorithms so that the data can be easily verified by spectral analysis. The generalized interface is demonstrated by connecting the clustered data with the assignment algorithms PACES and MONTE using previously assigned data for the lyase domain of DNA polymerase lambda. The spectral analysis program NMRView is now able to read the output of these programs for simplified analysis and verification. AVAILABILITY: NvAssign is available from http://dir.niehs.nih.gov/dirnmr/nvassign  相似文献   

12.
B Bendiak 《Carbohydrate research》1999,315(3-4):206-221
Peracetylation of free hydroxyl groups in model saccharides with [13C-carbonyl]acetic anhydride resulted in additional splittings of sugar ring proton signals in NMR spectra, due to 3-bond J couplings between each acetyl carbonyl carbon and a sugar ring proton at that position. Quantification of 144 of these 3-bond coupling constants in different saccharide structures showed a range between 2.5 and 4.7 Hz, whereas all possible 4-bond couplings between sugar ring protons and acetyl carbonyl carbons were within linewidth (< 0.5 Hz). Therefore, further splitting of sugar ring proton signals in the range of 2.5-4.7 Hz upon acetylation with a [13C-carbonyl]acetyl group identifies that position as (formerly) having a free hydroxyl group. This performs the same basic function as permethylation analysis, but does not require hydrolysis of glycosidic linkages. Additionally, proton-detected 2D heteronuclear multiple bond correlation (HMBC) experiments or proton-detected heteronuclear correlation spectroscopy (hetCOSY) enabled ring proton-carbonyl-13C 3-bond J connectivities to be correlated with high sensitivity. Modified NMR pulse sequences are reported that include frequency selective decoupling schemes to enable coupling constants to be determined from 2D data. The tailored pulse sequences resulted in higher spectral resolution and sensitivity for [13C-carbonyl]-ring proton correlations.  相似文献   

13.
Elucidation of high-resolution protein structures by NMR spectroscopy requires a large number of distance constraints that are derived from nuclear Overhauser effects between protons (NOEs). Due to the high level of spectral overlap encountered in 2D NMR spectra of proteins, the measurement of high quality distance constraints requires higher dimensional NMR experiments. Although four-dimensional Fourier transform (FT) NMR experiments can provide the necessary kind of spectral information, the associated measurement times are often prohibitively long. Covariance NMR spectroscopy yields 2D spectra that exhibit along the indirect frequency dimension the same high resolution as along the direct dimension using minimal measurement time. The generalization of covariance NMR to 4D NMR spectroscopy presented here exploits the inherent symmetry of certain 4D NMR experiments and utilizes the trace metric between donor planes for the construction of a high-resolution spectral covariance matrix. The approach is demonstrated for a 4D (13)C-edited NOESY experiment of ubiquitin. The 4D covariance spectrum narrows the line-widths of peaks strongly broadened in the FT spectrum due to the necessarily short number of increments collected, and it resolves otherwise overlapped cross peaks allowing for an increase in the number of NOE assignments to be made from a given dataset. At the same time there is no significant decrease in the positive predictive value of observing a peak as compared to the corresponding 4D Fourier transform spectrum. These properties make the 4D covariance method a potentially valuable tool for the structure determination of larger proteins and for high-throughput applications in structural biology.  相似文献   

14.
The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NRM spectroscopy. Here, we present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. We show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for alpha-helical and beta-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III parvalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and alpha-helical conformations for the residues Ala 54-Leu 63 of parvalbumin. NOEs that were not previously identified in 2D spectra of parvalbumin due to overlap are found.  相似文献   

15.
Summary A new program package, XEASY, was written for interactive computer support of the analysis of NMR spectra for three-dimensional structure determination of biological macromolecules. XEASY was developed for work with 2D, 3D and 4D NMR data sets. It includes all the functions performed by the precursor program EASY, which was designed for the analysis of 2D NMR spectra, i.e., peak picking and support of sequence-specific resonance assignments, cross-peak assignments, cross-peak integration and rate constant determination for dynamic processes. Since the program utilizes the X-window system and the Motif widget set, it is portable on a wide range of UNIX workstations. The design objective was to provide maximal computer support for the analysis of spectra, while providing the user with complete control over the final resonance assignments. Technically important features of XEASY are the use and flexible visual display of strips, i.e., two-dimensional spectral regions that contain the relevant parts of 3D or 4D NMR spectra, automated sorting routines to narrow down the selection of strips that need to be interactively considered in a particular assignment step, a protocol of resonance assignments that can be used for reliable bookkeeping, independent of the assignment strategy used, and capabilities for proper treatment of spectral folding and efficient transfer of resonance assignments between spectra of different types and different dimensionality, including projected, reduced-dimensionality triple-resonance experiments.Abbreviations 1D, 2D, 3D, 4D one-, two-, three-, four-dimensional - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - TOCSY total correlation spectroscopy - COSY correlation spectroscopy - TPPI time-proportional phase incrementation  相似文献   

16.
When whole-cell extracts are analyzed, proton nuclear magnetic resonance (1H NMR) spectroscopy provides biochemical profiles that contain overlapping signals of the majority of the compounds. To determine whether cyanobacteria could be taxonomically discriminated on the basis of metabolic fingerprinting, we subjected whole-cell extracts of the cyanobacteria to1H NMR. The1H NMR spectra revealed a predominance of signals in the aliphatic region. Principal component analysis (PCA) of the data then enabled discrimination of the cyanobacteria. The hierarchical dendrogram, based on PCA of the aliphatic region data, showed that six cyanobacterial taxa were discriminated from two eukaryotic microalgal species, and that the six taxa could be subsequently divided into three groups. This agrees with the current taxonomy of cyanobacteria. Therefore, our overall results indicate that metabolic fingerprinting using1H NMR spectra and multivariate statistical analysis provide a simple, rapid method for the taxonomical discrimination of cyanobacteria.  相似文献   

17.
We present a new method for rapid NMR data acquisition and assignments applicable to unlabeled (12C) or 13C-labeled biomolecules/organic molecules in general and metabolomics in particular. The method involves the acquisition of three two dimensional (2D) NMR spectra simultaneously using a dual receiver system. The three spectra, namely: (1) G-matrix Fourier transform (GFT) (3,2)D [13C, 1H] HSQC–TOCSY, (2) 2D 1H–1H TOCSY and (3) 2D 13C–1H HETCOR are acquired in a single experiment and provide mutually complementary information to completely assign individual metabolites in a mixture. The GFT (3,2)D [13C, 1H] HSQC–TOCSY provides 3D correlations in a reduced dimensionality manner facilitating high resolution and unambiguous assignments. The experiments were applied for complete 1H and 13C assignments of a mixture of 21 unlabeled metabolites corresponding to a medium used in assisted reproductive technology. Taken together, the experiments provide time gain of order of magnitudes compared to the conventional data acquisition methods and can be combined with other fast NMR techniques such as non-uniform sampling and covariance spectroscopy. This provides new avenues for using multiple receivers and projection NMR techniques for high-throughput approaches in metabolomics.  相似文献   

18.
As a necessary first step in the use of heteronuclear correlated spectra to obtain high resolution solution structures of the protein, assignment of the 15N NMR spectra of reduced and oxidized Escherichia coli thioredoxin (Mr 12,000) uniformly labeled with 15N has been performed. The 15N chemical shifts of backbone amide nitrogen atoms have been determined for both oxidation states of thioredoxin using 15N-1H correlated and two-dimensional heteronuclear single-quantum coherence (HSQC) TOCSY and NOESY spectra. The backbone assignments are complete, except for the proline imide nitrogen resonances and include Gly33, whose amide proton resonance is difficult to observe in homonuclear 1H spectra. The differences in the 15N chemical shift between oxidized and reduced thioredoxin, which occur mainly in the vicinity of the two active site cysteines, including residues distant in the amino acid sequence which form a hydrophobic surface close to the active site, are consistent with the differences observed for proton chemical shifts in earlier work on thioredoxin.  相似文献   

19.
Amphipols (APols) are amphiphatic polymers that keep membrane proteins (MPs) water-soluble. The best characterized and most widely used APol to date, A8-35, comprises a polyacrylate backbone grafted with octyl- and isopropylamine side chains. The nature of its hydrophilic moieties prevents its use at the slightly acidic pH that is desirable to slow down the rate of amide proton exchange in solution NMR studies. We describe here the synthesis and properties of pH-insensitive APols obtained by replacing isopropyles with taurine. Sulfonated APols (SAPols) can be used to trap MPs in the form of small complexes, to stabilize them, and to keep them water-soluble even at low pH. [(15) N,(1) H]-transverse relaxation-optimized spectroscopy NMR spectra obtained at pH 6.8 of a bacterial outer MP folded in SAPols show that the protein is correctly folded. The spectra have a resolution similar to that achieved with A8-35 and reveal water-exposed amide and indole protons whose resonance peaks are absent at pH 8.0.  相似文献   

20.
High resolution NMR study of CAP binding site 22mer in H2O solution   总被引:1,自引:0,他引:1  
High resolution proton NMR were measured for the deoxyoligonucleotide 22mer duplex corresponding to the CAP (catabolite gene activator protein) binding site of lac promotor. The spectra in the lower field region than the water resonance were taken with the time-shared Redfield pulse method by using a JEOL 500 MHz NMR spectrometer. In the imino proton region 18 peaks were separately observed, but the area intensity at 10 degrees C corresponds to 20 protons. By selective irradiation at each peak position NOEs (nuclear Overhauser effects) were observed between the imino and adenine C2H protons and between imino proton themselves. By tracing sequential NOE train carefully, 17 imino proton signals could be unambiguously assigned to each base pair except five AT base pairs at terminals. With the elevation of temperature the peaks showed gradual broadening and disappeared, which indicates the stepwise base pair opening of the duplex. Referring to the above peak assignments it can be concluded that GC20 and AT4 pairs close to terminals relax first and the base pair opening proceeds toward central GC13 and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号