首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment.  相似文献   

2.
To secure food and water safety, quantitative information on multiple pathogens is important. In this study, we developed a microfluidic quantitative PCR (MFQPCR) system to simultaneously quantify 11 major human viral pathogens, including adenovirus, Aichi virus, astrovirus, enterovirus, human norovirus, rotavirus, sapovirus, and hepatitis A and E viruses. Murine norovirus and mengovirus were also quantified in our MFQPCR system as a sample processing control and an internal amplification control, respectively. River water contaminated with effluents from a wastewater treatment plant in Sapporo, Japan, was collected and used to validate our MFQPCR system for multiple viruses. High-throughput quantitative information was obtained with a quantification limit of 2 copies/μl of cDNA/DNA. Using this MFQPCR system, we could simultaneously quantify multiple viral pathogens in environmental water samples. The viral quantities obtained using MFQPCR were similar to those determined by conventional quantitative PCR. Thus, the MFQPCR system developed in this study can provide direct and quantitative information for viral pathogens, which is essential for risk assessments.  相似文献   

3.
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission.  相似文献   

4.
Globally, norovirus is associated with approximately one-fifth of all diarrhea cases, with similar prevalence in both children and adults, and is estimated to cause over 200,000 deaths annually in developing countries. Norovirus is an important pathogen in a number of high-priority domains: it is the most common cause of diarrheal episodes globally, the principal cause of foodborne disease outbreaks in the United States, a key health care–acquired infection, a common cause of travel-associated diarrhea, and a bane for deployed military troops. Partly as a result of this ubiquity and burden across a range of different populations, identifying target groups and strategies for intervention has been challenging. And, on top of the breadth of this public health problem, there remain important gaps in scientific knowledge regarding norovirus, especially with respect to disease in low-income settings.Many pathogens can cause acute gastroenteritis. Historically, rotavirus was the most common cause of severe disease in young children globally. Now, vaccines are available for rotavirus and are universally recommended by the World Health Organization. In countries with effective rotavirus vaccination programs, disease due to that pathogen has decreased markedly, but norovirus persists and is now the most common cause of pediatric gastroenteritis requiring medical attention. However, the data supporting the precise role of norovirus in low- and middle-income settings are sparse. With vaccines in the pipeline, addressing these and other important knowledge gaps is increasingly pressing.We assembled an expert group to assess the evidence for the global burden of norovirus and to consider the prospects for norovirus vaccine development. The group assessed the evidence in the areas of burden of disease, epidemiology, diagnostics, disease attribution, acquired immunity, and innate susceptibility, and the group considered how to bring norovirus vaccines from their current state of development to a viable product that will benefit global health.

Summary Points

  • Diagnostic improvements have fundamentally changed our understanding of norovirus. The current evidence suggests that disease burden of norovirus is high, second only to rotavirus as a cause of severe acute gastroenteritis in children in developed countries, and that it is a key cause of diarrhea-associated morbidity and mortality worldwide.
  • Young children experience the highest incidence of disease; severe outcomes are most common among young children and the elderly.
  • Immunity is of limited duration and is strain- or genotype-specific, with little or no protection conferred across genogroups.
  • Innate susceptibility to noroviruses is determined by the host’s genetics of glycan expression; individuals with a functional FUT2 gene (known as secretors) have greater susceptibility to certain common viruses.
  • Recent progress has been made in the development of in vitro cell culture for norovirus as well as in the identification of candidate immune correlates of protection.
  • Norovirus vaccines are steadily moving through the development pipeline. All of these products are based on the production of virus like particles (VLPs) or P particle subunit in expression systems. Initial human challenge studies have demonstrated safety, immunogenicity, and efficacy.
  • One of the challenges for developing targeted interventions, including a norovirus vaccine, is that many distinct population groups, based on demographics (e.g., children, elderly) or risk (e.g., food handlers, military, travelers, health care workers), are affected.
  相似文献   

5.
Rotavirus and norovirus are associated with a substantial burden of diarrheal disease in humans and some animals, but their role in acute viral gastroenteritis in non-human primates has not been established. We examined sera from five species of Old and New World monkeys and chimpanzees for antibodies to rotavirus and norovirus by enzyme immunoassays using RRV and three recombinant human norovirus capsid proteins, respectively. Most (88%) of the 3 Old World monkey species (mangabey, pigtail, and rhesus) and apes were seropositive for rotavirus. Norovirus antibody was prevalent in the three monkey species, with 53% (44/83) and 58% (48/83) seropositive for GI and GII strains, respectively. Eleven (92%) of the 12 chimpanzees tested were seropositive for GI norovirus. Given the high rate of infection with both viruses, the role of these agents in causing acute gastroenteritis in non-human primates and the value of these animals as models of infection and disease need to be assessed.  相似文献   

6.
Noroviruses cause major epidemic gastroenteritis in humans. A large number of strains of these single-stranded RNA viruses have been reported. Due to the absence of infectious clones of noroviruses and the high sequence variability in their capsids, it has not been possible to identify functionally important residues in these capsids. Consequently, norovirus strain diversity is not understood on the basis of capsid functions, and the development of therapeutic compounds has been hampered. To determine functionally important residues in noroviruses, we have analyzed a number of norovirus capsid sequences in the context of the Norwalk virus capsid crystal structure by using the evolutionary trace method. This analysis has identified capsid protein residues that uniquely characterize different norovirus strains and provide new insights into capsid assembly and disassembly pathways and the strain diversity of these viruses. Such residues form specific three-dimensional clusters that may be of functional importance in noroviruses. One of these clusters includes residues known to participate in the proteolytic cleavage of these viruses at high pH. Other clusters are formed in capsid regions known to be important in the binding of antibodies to noroviruses, thereby indicating residues that may be important in the antigenicity of these viruses. The highly variable region of the capsid shows a distinct cluster whose residues may participate in norovirus-receptor interactions.  相似文献   

7.
In November 2004, 116 individuals in an elderly nursing home in El Grao de Castellón, Spain were symptomatically infected with genogroup II.4 (GII.4) norovirus. The global attack rate was 54.2%. Genotyping of 34 symptomatic individuals regarding the FUT2 gene revealed that one patient was, surprisingly, a non-secretor, hence indicating secretor-independent infection. Lewis genotyping revealed that Lewis-positive and negative individuals were susceptible to symptomatic norovirus infection indicating that Lewis status did not predict susceptibility. Saliva based ELISA assays were used to determine binding of the outbreak virus to saliva samples. Saliva from a secretor-negative individual bound the authentic outbreak GII.4 Valencia/2004/Es virus, but did not in contrast to secretor-positive saliva bind VLP of other strains including the GII.4 Dijon strain. Amino acid comparison of antigenic A and B sites located on the external loops of the P2 domain revealed distinct differences between the Valencia/2004/Es and Dijon strains. All three aa in each antigenic site as well as 10/11 recently identified evolutionary hot spots, were unique in the Valencia/2004/Es strain compared to the Dijon strain. To the best of our knowledge, this is the first example of symptomatic GII.4 norovirus infection of a Lea+b− individual homozygous for the G428A nonsense mutation in FUT2. Taken together, our study provides new insights into the host genetic susceptibility to norovirus infections and evolution of the globally dominating GII.4 viruses.  相似文献   

8.
Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2(-/-)) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance.  相似文献   

9.
Norwalk virus, a member of the family Caliciviridae, is an important cause of acute epidemic nonbacterial gastroenteritis. Norwalk and related viruses are classified in a separate genus of Caliciviridae called Norovirus, which is comprised of at least three genogroups based on sequence differences. Many of the currently available immunologic reagents used to study these viruses are type specific, which limits the identification of antigenically distinct viruses in detection assays. Identification of type-specific and cross-reactive epitopes is essential for designing broadly cross-reactive diagnostic assays and dissecting the immune response to calicivirus infection. To address this, we have mapped the epitopes on the norovirus capsid protein for both a genogroup I-cross-reactive monoclonal antibody and a genogroup II-cross-reactive monoclonal antibody by use of norovirus deletion and point mutants. The epitopes for both monoclonal antibodies mapped to the C-terminal P1 subdomain of the capsid protein. Although the genogroup I-cross-reactive monoclonal antibody was previously believed to recognize a linear epitope, our results indicate that a conformational component of the epitope explains the monoclonal antibody's genogroup specificity. Identification of the epitopes for these monoclonal antibodies is of significance, as they are components in a commercially available norovirus-diagnostic enzyme-linked immunosorbent assay.  相似文献   

10.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% ± 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

11.
Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.  相似文献   

12.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% +/- 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

13.
诺如病毒(Norovirus, NoV)是引起全人群急性胃肠炎暴发和流行的主要病原体,也是引起食源性疾病的最常见非细菌性病原体。由于缺少有效的小型动物及培养细胞研究模型,目前对NoV感染的致病机制尚不清楚。NoV实验室诊断技术发展成熟,尤其是近年来新技术的应用将进一步推动其诊断水平的提高,满足公共卫生和临床诊疗的新需求。  相似文献   

14.
Fruits and vegetables are major vehicles for transmission of food-borne enteric viruses since they are easily contaminated at pre- and postharvest stages and they undergo little or no processing. However, commonly used sanitizers are relatively ineffective for removing human norovirus surrogates from fresh produce. In this study, we systematically evaluated the effectiveness of surfactants on removal of a human norovirus surrogate, murine norovirus 1 (MNV-1), from fresh produce. We showed that a panel of surfactants, including sodium dodecyl sulfate (SDS), Nonidet P-40 (NP-40), Triton X-100, and polysorbates, significantly enhanced the removal of viruses from fresh fruits and vegetables. While tap water alone and chlorine solution (200 ppm) gave only <1.2-log reductions in virus titer in all fresh produce, a solution containing 50 ppm of surfactant was able to achieve a 3-log reduction in virus titer in strawberries and an approximately 2-log reduction in virus titer in lettuce, cabbage, and raspberries. Moreover, a reduction of approximately 3 logs was observed in all the tested fresh produce after sanitization with a solution containing a combination of 50 ppm of each surfactant and 200 ppm of chlorine. Taken together, our results demonstrate that the combination of a surfactant with a commonly used sanitizer enhanced the efficiency in removing viruses from fresh produce by approximately 100 times. Since SDS is an FDA-approved food additive and polysorbates are recognized by the FDA as GRAS (generally recognized as safe) products, implementation of this novel sanitization strategy would be a feasible approach for efficient reduction of the virus load in fresh produce.  相似文献   

15.
Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3D(pol)), homopolymeric templates, and synthetic subgenomic or antisubgenomic RNA. Initiation of RNA synthesis on homopolymeric templates as well as replication of subgenomic polyadenylated RNA was strictly primer dependent. In this context and as observed for other enteric RNA viruses, i.e., poliovirus, a protein-primed initiation of RNA synthesis after elongation of the VPg by norovirus 3D(pol) was postulated. To address this question, norovirus VPg was expressed in Escherichia coli and purified. Incubation of VPg with norovirus 3D(pol) generated VPg-poly(U), which primed the replication of subgenomic polyadenylated RNA. In contrast, replication of antisubgenomic RNA was not primer dependent, nor did it depend on a leader sequence, as evidenced by deletion analysis of the 3' termini of subgenomic and antisubgenomic RNA. On nonpolyadenylated RNA, i.e., antisubgenomic RNA, norovirus 3D(pol) initiated RNA synthesis de novo and terminated RNA synthesis by a poly(C) stretch. Interestingly, on poly(C) RNA templates, norovirus 3D(pol) initiated RNA synthesis de novo in the presence of high concentrations of GTP. We propose a novel model for initiation of replication of the norovirus genome by 3D(pol), with a VPg-protein-primed initiation of replication of polyadenylated genomic RNA and a de novo initiation of replication of antigenomic RNA.  相似文献   

16.
17.
18.
Recreational waters contaminated with human fecal pollution are a public health concern, and ensuring the safety of recreational waters for public use is a priority of both the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC). Current recreational water standards rely on fecal indicator bacteria (FIB) levels as indicators of human disease risk. However present evidence indicates that levels of FIB do not always correspond to the presence of other potentially harmful organisms, such as viruses. Thus, enteric viruses are currently tested as water quality indicators, but have yet to be successfully implemented in routine monitoring of water quality. This study utilized enteric viruses as possible alternative indicators of water quality to examine 18 different fresh and offshore recreational waters on O‘ahu, Hawai‘i, by using newly established laboratory techniques including highly optimized PCR, real time PCR, and viral infectivity assays. All sample sites were detected positive for human enteric viruses by PCR including enterovirus, norovirus genogroups I and II, and male specific FRNA coliphage. A six time-point seasonal study of enteric virus presence indicated significant variation in virus detection between the rainy and dry seasons. Quantitative PCR detected the presence of norovirus genogroup II at levels at which disease risk may occur, and there was no correlation found between enteric virus presence and FIB counts. Under the present laboratory conditions, no infectious viruses were detected from the samples PCR-positive for enteric viruses. These data emphasize both the need for additional indicators for improved monitoring of water quality, and the feasibility of using enteric viruses as these indicators. Electronic Supplementary MaterialSupplementary material is available for this article at 10.1007/s12250-015-3644-x and is accessible for authorized users.  相似文献   

19.
20.
Various enteric viruses including norovirus, rotavirus, adenovirus, and astrovirus are the major etiological agents of food-borne and water-borne disease outbreaks and frequently cause non-bacterial gastroenteritis worldwide. Sensitive and high-throughput detection methods for these viral pathogens are compulsory for diagnosing viral pathogens and subsequently improving public health. Hence, we developed a sensitive, specific, and high-throughput analytical assay to detect most major enteric viral pathogens using “Combimatrix” platform oligonucleotide probes. In order to detect four different enteric viral pathogens in a sensitive and simultaneous manner, we first developed a multiplex RT-PCR assay targeting partial gene sequences of these viruses with fluorescent labeling for the subsequent microarray. Then, five olignonucleotides specific to each of the four major enteric viruses were selected for the microarray from the oligonulceotide pools targeting the specific genes obtained by multiplex PCR of these viruses. The oligonucleotide microarray was evaluated against stool specimens containing single or mixed viral species. As a result, we demonstrated that the multiplex RT-PCR assay specifically amplified partial sequences of four enteric viruses and the subsequent microarray assay was capable of sensitive and simultaneous detection of those viruses. The developed method could be useful for diagnosing enteric viruses in both clinical and environmental specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号