首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.

  相似文献   

3.
Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals.  相似文献   

4.
5.
Proteins that serve as regulator of G protein signaling (RGS) primarily function as GTPase accelerators that promote GTP hydrolysis by the Gα subunits, thereby inactivating the G protein and rapidly switching off G protein-coupled signaling pathways. Since the first RGS protein was identified from the budding yeast Saccharomyces cerevisiae, more than 30 RGS and RGS-like proteins have been characterized from several model fungi, such as Aspergillus nidulans, Beauveria bassiana, Candida albicans, Fusarium verticillioides, Magnaporthe oryzae, and Metarhizium anisopliae. In this review, the partial biochemical properties and functional domains of RGS and RGS-like proteins were predicted and compared, and the roles of RGS and RGS-like proteins in different fungi were summarized. Moreover, the phylogenetic relationship among RGS and RGS-like proteins from various fungi was analyzed and discussed.  相似文献   

6.
Tubulogenesis by epithelial cells regulates kidney, lung, and mammary development, whereas that by endothelial cells regulates vascular development. Although functionally dissimilar, the processes necessary for tubulation by epithelial and endothelial cells are very similar. We performed microarray analysis to further our understanding of tubulogenesis and observed a robust induction of regulator of G protein signaling 4 (RGS4) mRNA expression solely in tubulating cells, thereby implicating RGS4 as a potential regulator of tubulogenesis. Accordingly, RGS4 overexpression delayed and altered lung epithelial cell tubulation by selectively inhibiting G protein-mediated p38 MAPK activation, and, consequently, by reducing epithelial cell proliferation, migration, and expression of vascular endothelial growth factor (VEGF). The tubulogenic defects imparted by RGS4 in epithelial cells, including its reduction in VEGF expression, were rescued by overexpression of constitutively active MKK6, an activator of p38 MAPK. Similarly, RGS4 overexpression abrogated endothelial cell angiogenic sprouting by inhibiting their synthesis of DNA and invasion through synthetic basement membranes. We further show that RGS4 expression antagonized VEGF stimulation of DNA synthesis and extracellular signal-regulated kinase (ERK)1/ERK2 and p38 MAPK activation as well as ERK1/ERK2 activation stimulated by endothelin-1 and angiotensin II. RGS4 had no effect on the phosphorylation of Smad1 and Smad2 by bone morphogenic protein-7 and transforming growth factor-beta, respectively, indicating that RGS4 selectively inhibits G protein and VEGF signaling in endothelial cells. Finally, we found that RGS4 reduced endothelial cell response to VEGF by decreasing VEGF receptor-2 (KDR) expression. We therefore propose RGS4 as a novel antagonist of epithelial and endothelial cell tubulogenesis that selectively antagonizes intracellular signaling by G proteins and VEGF, thereby inhibiting cell proliferation, migration, and invasion, and VEGF and KDR expression.  相似文献   

7.
Miller KG  Emerson MD  McManus JR  Rand JB 《Neuron》2000,27(2):289-299
Recent studies describe a network of signaling proteins centered around G(o)alpha and G(q)alpha that regulates neurotransmitter secretion in C. elegans by controlling the production and consumption of diacylglycerol (DAG). We sought other components of the Goalpha-G(q)alpha signaling network by screening for aldicarb-resistant mutants with phenotypes similar to egl-30 (G(q)alpha) mutants. In so doing, we identified ric-8, which encodes a novel protein named RIC-8 (synembryn). Through cDNA analysis, we show that RIC-8 is conserved in vertebrates. Through immunostaining, we show that RIC-8 is concentrated in the cytoplasm of neurons. Exogenous application of phorbol esters or loss of DGK-1 (diacylglycerol kinase) rescues ric-8 mutant phenotypes. A genetic analysis suggests that RIC-8 functions upstream of, or in conjunction with, EGL-30 (G(q)alpha).  相似文献   

8.
Regulator of G protein signaling (RGS) proteins must bind membranes in an orientation that permits the protein-protein interactions necessary for regulatory activity. RGS4 binds to phospholipid surfaces in a slow, multistep process that leads to maximal GTPase-activating protein (GAP) activity. When RGS4 is added to phospholipid vesicles that contain m2 or m1 muscarinic receptor and G(i), G(z), or G(q), GAP activity increases approximately 3-fold over 4 h at 30 degrees C and more slowly at 20 degrees C. This increase in GAP activity is preceded by several other events that suggest that, after binding, optimal interaction with G protein and receptor requires reorientation of RGS4 on the membrane surface, a conformational change, or both. Binding of RGS4 is initially reversible but becomes irreversible within 5 min. Onset of irreversibility parallels initial quenching of tryptophan fluorescence (t(12) approximately 30 s). Further quenching occurs after binding has become irreversible (t(12) approximately 6 min) but is complete well before maximal GAP activity is attained. These processes all appear to be energetically driven by the amphipathic N-terminal domain of RGS4 and are accelerated by palmitoylation of cysteine residues in this region. The RGS4 N-terminal domain confers similar membrane binding behavior on the RGS domains of either RGS10 or RGSZ1.  相似文献   

9.
It has long been known that animal heterotrimeric Gαβγ proteins are activated by cell-surface receptors that promote GTP binding to the Gα subunit and dissociation of the heterotrimer. In contrast, the Gα protein from Arabidopsis thaliana (AtGPA1) can activate itself without a receptor or other exchange factor. It is unknown how AtGPA1 is regulated by Gβγ and the RGS (regulator of G protein signaling) protein AtRGS1, which is comprised of an RGS domain fused to a receptor-like domain. To better understand the cycle of G protein activation and inactivation in plants, we purified and reconstituted AtGPA1, full-length AtRGS1, and two putative Gβγ dimers. We show that the Arabidopsis Gα protein binds to its cognate Gβγ dimer directly and in a nucleotide-dependent manner. Although animal Gβγ dimers inhibit GTP binding to the Gα subunit, AtGPA1 retains fast activation in the presence of its cognate Gβγ dimer. We show further that the full-length AtRGS1 protein accelerates GTP hydrolysis and thereby counteracts the fast nucleotide exchange rate of AtGPA1. Finally, we show that AtGPA1 is less stable in complex with GDP than in complex with GTP or the Gβγ dimer. Molecular dynamics simulations and biophysical studies reveal that altered stability is likely due to increased dynamic motion in the N-terminal α-helix and Switch II of AtGPA1. Thus, despite profound differences in the mechanisms of activation, the Arabidopsis G protein is readily inactivated by its cognate RGS protein and forms a stable, GDP-bound, heterotrimeric complex similar to that found in animals.  相似文献   

10.
γ-Aminobutyric acid (GABA) release from inhibitory interneurons located within the cerebellar cortex limits the extent of neuronal excitation in part through activation of metabotropic GABA(B) receptors. Stimulation of these receptors triggers a number of downstream signaling events, including activation of GIRK channels by the Gβγ dimer resulting in membrane hyperpolarization and inhibition of neurotransmitter release from presynaptic sites. Here, we identify RGS6, a member of the R7 subfamily of RGS proteins, as a key regulator of GABA(B)R signaling in cerebellum. RGS6 is enriched in the granule cell layer of the cerebellum along with neuronal GIRK channel subunits 1 and 2 where RGS6 forms a complex with known binding partners Gβ(5) and R7BP. Mice lacking RGS6 exhibit abnormal gait and ataxia characterized by impaired rotarod performance improved by treatment with a GABA(B)R antagonist. RGS6(-/-) mice administered baclofen also showed exaggerated motor coordination deficits compared with their wild-type counterparts. Isolated cerebellar neurons natively expressed RGS6, GABA(B)R, and GIRK channel subunits, and cerebellar granule neurons from RGS6(-/-) mice showed a significant delay in the deactivation kinetics of baclofen-induced GIRK channel currents. These results establish RGS6 as a key component of GABA(B)R signaling and represent the first demonstration of an essential role for modulatory actions of RGS proteins in adult cerebellum. Dysregulation of RGS6 expression in human patients could potentially contribute to loss of motor coordination and, thus, pharmacological manipulation of RGS6 levels might represent a viable means to treat patients with ataxias of cerebellar origin.  相似文献   

11.
Regulator of G protein signaling (RGS) proteins modulate signaling through pathways that use heterotrimeric G proteins as transducing elements. RGS1 is expressed at high levels in certain B cell lines and can be induced in normal B cells by treatment with TNF-alpha. To determine the signaling pathways that RGS1 may regulate, we examined the specificity of RGS1 for various G alpha subunits and assessed its effect on chemokine signaling. G protein binding and GTPase assays revealed that RGS1 is a Gi alpha and Gq alpha GTPase-activating protein and a potential G12 alpha effector antagonist. Functional studies demonstrated that RGS1 impairs platelet activating factor-mediated increases in intracellular Ca+2, stromal-derived factor-1-induced cell migration, and the induction of downstream signaling by a constitutively active form of G12 alpha. Furthermore, germinal center B lymphocytes, which are refractory to stromal-derived factor-1-triggered migration, express high levels of RGS1. These results indicate that RGS proteins can profoundly effect the directed migration of lymphoid cells.  相似文献   

12.
Physiological actions of regulators of G-protein signaling (RGS) proteins   总被引:5,自引:0,他引:5  
Ishii M  Kurachi Y 《Life sciences》2003,74(2-3):163-171
Regulators of G-protein signaling (RGS) proteins are a family of proteins, which accelerate GTPase-activity intrinsic to the alpha subunits of heterotrimeric G-proteins and play crucial roles in the physiological control of G-protein signaling. If RGS proteins were active unrestrictedly, they would completely suppress various G-protein-mediated cell signaling as has been shown in the over-expression experiments of various RGS proteins. Thus, physiologically the modes of RGS-action should be under some regulation. The regulation can be achieved through the control of either the protein function and/or the subcellular localization. Examples for the former are as follows: (i) Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) inhibits RGS-action, which can be recovered by Ca(2+)/calmodulin. This underlies a voltage-dependent "relaxation" behavior of G-protein-gated K(+) channels. (ii) A modulatory protein, 14-3-3, binds to the RGS proteins phosphorylated by PKA and inhibits their actions. For the latter mechanism, additional regulatory modules, such as PDZ, PX, and G-protein gamma subunit-like (GGL) domains, identified in several RGS proteins may be responsible: (i) PDZ domain of RGS12 interacts with a G-protein-coupled chemokine receptor, CXCR2, and thus facilitates its GAP action on CXCR2-mediated G-protein signals. (ii) RGS9 forms a complex with a type of G-protein beta-subunit (Gbeta5) via its GGL domain, which facilitates the GAP function of RGS9. Both types of regulations synergistically control the mode of action of RGS proteins in the physiological conditions, which contributes to fine tunings of G-protein signalings.  相似文献   

13.
Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100–115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.  相似文献   

14.
Drugs of abuse such as opioids and stimulants share a common dopaminergic reward pathway; however, in response to continual intermittent exposure to such drugs, there are neuronal alterations leading to changes in behavior. Regulators of G protein signaling (RGS) are proteins that negatively regulate G protein signaling and are expressed in brain areas important for the pharmacology of abused drugs. Moreover, the level of expression of several of these proteins is regulated by abused drugs. In this article, we discuss RGS proteins, their regulation by morphine and stimulants, and how altered levels of these proteins affect cell signaling to contribute to the pharmacology and behavioral consequence of abused drugs. Finally, we consider if RGS proteins represent viable targets for drug abuse medications.  相似文献   

15.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

16.
Norepinephrine inhibits omega-conotoxin GVIA-sensitive presynaptic Ca2+ channels in chick dorsal root ganglion neurons through two pathways, one mediated by Go and the other by Gi. These pathways desensitize at different rates. We have found that recombinant Galpha interacting protein (GAIP) and regulators of G protein signaling (RGS)4 selectively accelerate the rate of desensitization of Go- and Gi-mediated pathways, respectively. Blockade of endogenous RGS proteins using antibodies raised against Galpha interacting protein and RGS4 slows the rate of desensitization of these pathways in a selective manner. These results demonstrate that different RGS proteins may interact with Gi and Go selectively, giving rise to distinct time courses of transmitter-mediated effects.  相似文献   

17.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

18.
The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.  相似文献   

19.
Control of chondrocyte differentiation is attained, in part, through G-protein signaling, but the functions of the RGS family of genes, well known to control G-protein signaling at the Galpha subunit, have not been studied extensively in chondrogenesis. Recently, we have identified the Rgs2 gene as a regulator of chondrocyte differentiation. Here we extend these studies to additional Rgs genes. We demonstrate that the Rgs4, Rgs5, Rgs7, and Rgs10 genes are differentially regulated during chondrogenic differentiation in vitro and in vivo. To investigate the roles of RGS proteins during cartilage development, we overexpressed RGS4, RGS5, RGS7, and RGS10 in the chondrogenic cell line ATDC5. We found unique and overlapping effects of individual Rgs genes on numerous parameters of chondrocyte differentiation. In particular, RGS5, RGS7, and RGS10 promote and RGS4 inhibits chondrogenic differentiation. The identification of Rgs genes as novel regulators of chondrogenesis will contribute to a better understanding of both normal cartilage development and the etiology of chondrodysplasias and osteoarthritis.  相似文献   

20.
The R7 family of regulators of G protein signaling (RGS) proteins, comprising RGS6, RGS7, RGS9, and RGS11, regulate neuronal G protein signaling pathways. All members of the R7 RGS form trimeric complexes with the atypical G protein β subunit, Gβ5, and membrane anchor R7BP or R9AP. Association with Gβ5 and membrane anchors has been shown to be critical for maintaining proteolytic stability of the R7 RGS proteins. However, despite its functional importance, the mechanism of how R7 RGS forms complexes with Gβ5 and membrane anchors remains poorly understood. Here, we used protein-protein interaction, co-localization, and protein stability assays to show that association of RGS9 with membrane anchors requires Gβ5. We further establish that the recruitment of R7BP to the complex requires an intact interface between the N-terminal lobe of RGS9 and protein interaction surface of Gβ5. Site-directed mutational analysis reveals that distinct molecular determinants in the interface between Gβ5 and N-terminal Dishevelled, EGL-10, Pleckstrin/DEP Helical Extension (DEP/DHEY) domains are differentially involved in R7BP binding and proteolytic stabilization. On the basis of these findings, we conclude that Gβ5 contributes to the formation of the binding site to the membrane anchors and thus is playing a central role in the assembly of the proteolytically stable trimeric complex and its correct localization in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号