首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
HO  L. C.; NICHOLS  R. 《Annals of botany》1977,41(1):227-242
The dry matter and carbohydrate contents of intact growing ‘Sonia’rose corollas were measured from an immature bud to full expansionof the petals. Reducing sugars and starch, but not sucrose,accumulated throughout most of the corolla development. Thesefindings were compared with the carbohydrate changes in thecorollas of flowers cut at different stages and allowed to agewith their stems either in water or in a sucrose-containingsolution. For a few days after cutting the carbohydrate metabolismof the cut flower roughly paralleled that of the intact floweruntil starch hydrolysed to maintain the soluble carbohydratepool. Feeding with the sucrose solution maintained the solublecarbohydrate levels and retarded the hydrolysis of starch. The cut flowers were fed with 14C-sucrose and the labelled metabolitesin the leaves and flowers were analysed. Active incorporationof 14C into ethanol-soluble carbohydrates, starch and ethanol-insolublematerial was found indicating that an active anabolic phaseprecedes the catabolic phase during the senescence of the cutflower. The findings are discussed in relation to the source-sinkhypothesis of flower development, with regard to the senescenceand growth of the corollas of cut and intact flowers respectively.  相似文献   

2.
The economy of carbon in nodulated white lupin (Lupinus albusL.) was studied in terms of consumption of net photosynthatein nitrogen fixation, in maintenance of respiration, and inthe production of dry matter and protein. Net photosynthesisrose to a maximum in early fruiting and then fell abruptly dueto shedding of leaves. Nodulated roots acquired translocateequivalent to 51% of the plant's net photosynthate, 78% of thecarbon of this translocate being respired, 10% entering drymatter, and 12% returning to the shoot attached to productsof nitrogen fixation. Nodules utilized 4?0–6?5 g C infixing 1 g nitrogen. Photosynthate was utilized most effectivelyfor nitrogen fixation in late vegetative growth. Fruits sequestered16% of the plant's net photosynthate, shoot night respiration17%, and dry matter formation in shoot vegetative parts 22%.Averaged over growth, 9?9 g net photosynthate was required toproduce 1 g seed dry matter and 31 g net photosynthate to produce1 g seed protein. Budgets for utilization of the carbon of netphotosynthate were constructed for 10 d intervals of the plant'sgrowth cycle. Feeding of shoots with 14CO2 resulted in radiocarbonbecoming partitioned approximately as predicted by these budgets.The dependence of root respiration on recent photosynthate wasassessed by following the time course of release of 14CO2 tothe rooting medium of the 14CO-labelled plants.  相似文献   

3.
Measurements of net photosynthetic rate (at 1450µ molm-2s-1photosynthetically active radiation) of leaves, of leafand stem respiration, and of shoot growth of potentially-fruitinglaterals on kiwifruit (Actinidia deliciosa ) were used to estimateweekly shoot carbon balances over the first 10 weeks of shootgrowth (budburst to anthesis). Consistent differences in therate of shoot elongation, of internode expansion and of increasein basal diameter were found among shoots. Faster-growing (long)shoots acquired carbon by photosynthesis at a faster rate evenin the first few weeks after budburst, but the amount of carbonrequired to sustain this growth resulted in shoot carbon deficitswhich were approx. seven times greater than those of the slower-growing(short) shoots. It was estimated that the transition from shootcarbon deficit to carbon surplus occurred 3–4 weeks afterbudburst, irrespective of shoot growth rate. As a result ofsubsequent rapid increases in shoot photosynthetic rate, longshoots had a shoot carbon surplus of 4.4 g C week-1in the weekbefore anthesis, approx. three times that of the short shoots.Defoliation (66%) of shoots 1 week after budburst, and subsequentremoval of later-emerging leaves to maintain the level of defoliation,had the effect of slowing shoot growth in the carbon deficitperiod, particularly for the long shoots. However, the durationof shoot expansion in the defoliated shoots was longer, resultingultimately in shoots which were longer than the control shoots.Linkages among early carbon balance dynamics of shoots, shootlength at anthesis, and fruit growth are discussed. Actinidia deliciosa ; kiwifruit; shoot growth; carbon acquisition; respiration; photosynthesis  相似文献   

4.
Young plants of uniculm barley were grown singly in pots ina growth room at 23/21 °C, and an irradiance of 655 µEm–2s–1 during each 12 h photoperiod. At the fifth leaf stage,they were subjected to 80 h of continuous darkness during whichthe rates of CO2 efflux of vegetative shoot meristems, and maturefully expanded leaves, were separately monitored. Respiratoryefflux from the meristematic tissue was initially high, 12–15mg CO2 g–1 h–1, equivalent to a daily loss in weightof 20–25 per cent. It remained high, or even rose slightly,during what would have been the normal dark period, but thenfell sharply. Even so, it was still three times that of themature tissue at the end of the experimental period. The rateof CO2 efflux of the mature tissue began low, and fell evenfurther during the first 12 h of darkness. It then levelledoff at a rate of 2·0–2·5 mg CO2 g–1h–1, equivalent to a daily loss in weight of about 3 percent. It is suggested that the rate of ‘mature tissue’respiration, established after 12–24 h of darkness, mightbe a useful selection criterion to employ in attempts to increasethe total dry matter yield of the grass crop by breeding. Hordeum vulgare L., barley, respiration, synthetic respiration, maintenance respiration, meristem, mature tissue respiration, simulated sward  相似文献   

5.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

6.
ROBSON  M. J. 《Annals of botany》1973,37(3):487-500
The leaf growth, tiller production, light interception, anddry weight increase of a simulated sward of S24 perennial ryegrass(Lolium perenne) were followed during the development of thesward from a collection of two-leaved seedlings to a closedcanopy with an LAI of 23, of which 15 consisted of green leaflaminae. The dry weight of live shoots increased exponentiallyat first, but then entered a long linear phase of increase.This was equivalent to a crop growth rate of 200 Kg ha–1day–1 and a conversion efficiency of radiant energy (400–700nm) of 7.2 per cent. Towards the end of the growth period therate of increase of live shoots declined rapidly to zero anda ceiling yield was reached equivalent to 10 metric tons ha–1.Leaf growth continued at a high rate, but was equalled by therate of leaf death, so that the weight of live leaf tissue remainedconstant. By this time the swards had achieved a stable tillerpopulation (about 1 cm–1), each tiller bore a constantnumber of live leaves (about three), and the length of eachnewly expanded leaf equalled the length of the old leaf it replaced(about 70 cm). The swards were grown in Perlite so that in theabsence of soil fauna dead leaves accumulated at the base ofthe sward where, after 12 weeks, they accounted for 19 per centof the total weight of dry matter produced.  相似文献   

7.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

8.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

9.
Budgets for C and N were computed for pigeonpea (Cajanus cajanL.) at 15 d intervals, for the entire life cycle. Maximum Cand N in dry matter was observed at 90 d after sowing. Of theplants total respiratory loss during the vegetative phase, shoots,roots and nodules accounted for 65%, 23% and 12%, respectively.During the reproductive phases, the respiratory burden of theroots increased, while that of shoots and nodules decreased.Total respiratory loss as a proportion of net photosynthateremained more or less constant until ‘flowering and pod-setting’but increased heavily during seed filling, losing nearly 75%of the photosynthate in respiration. The efficiency of nitrogenfixation, in relation to respiratory output of the whole plantand nodulated roots, decreased during the period 60–90d after sowing, while that of nodules decreased from day 45onwards. Photosynthate supply to nodules and nodulated rootsincreased up to 75 d and 90 d after sowing, respectively. During45–90 d, nodules were fixing a constant proportion ofN per unit of C translocated (0.2 mg N mg–1 C). Nodulatedroots, on an average, fixed 0.07 mg N mg–1 C translocatedin the vegetative phase and this value decreased considerablyduring the subsequent phases. The crop produced during its lifecycle 50.4 g of glucose equivalents and yielded 3.8 g seed drymatter and 0.8 g seed protein giving an average of 13.2 g g–1seed dry matter and 62.8 g g–1 seed protein. Selectioncriteria for the improvement of C, N economy in pigeonpea havebeen suggested. Key words: Cajanus cajan, Carbon, Nitrogen, Dry weight, Plant parts, Growth, Development, Models  相似文献   

10.
The Cyt f and P700 contents in leaves of three Sorghum, varietieswere measured, in relation to their carbon assimilation, underdifferent light intensities during growth. At the maximum irradiationused (1,800 µE m–2 s–1) the ratio of P700to Cyt f was close to unity, whereas under low irradiation (450µE m–2 s–1) the ratio of P700 to Cyt f rangedfrom two to three. A strikingly positive correlation existedbetween the P700 contents of the leaves and their rates of carbondioxide fixation, dry matter production and Cyt f contents,only when the plants were grown under high light intensities.The P700 content of the leaves in plants grown under low irradiationwas unrelated to the contents of Cyt f. Thus, at a high lightintensity there is a close relationship between the Cyt f andP700 levels, but at low intensities the amounts of electroncarriers and the reaction centre are independent. (Received March 7, 1983; Accepted August 24, 1983)  相似文献   

11.
GRAVES  C. J. 《Annals of botany》1978,42(1):117-125
The effects of various levels of copper on the uptake and distributionof copper in Chrysanthemum morifolium grown in solution cultureand peat-sand have been examined. Whole plants growing in shortdays were sampled at regular intervals, divided into roots,stem, leaves and lateral shoots, and analysed for copper. Thepartitioning of copper between these tissues showed that a relativelylarge proportion (30–40 per cent) of the total plant copperwas accumulated in the roots of normal plants during the harvestingperiod, compared with approximately 10 per cent in the rootsof copper deficient plants. Whilst the copper content (ug g–1) of leaves and stemfrom normal plants was negatively correlated with the amountof dry matter produced (P < 0·001), the correspondingcopper deficient tissues showed little variation in copper contentwith increases in tissue dry weight. A more detailed investigationof the copper content of leaves from normal plants showed thatgradients existed within the plant with respect to both leafposition and time of harvest which could be described by a singlecubic surface equation (P < 0·001).  相似文献   

12.
Seeds of apple cv. Golden Delicious were germinated and cultivatedin the greenhouse until the third leaf emerged. Respirationofgerminating seeds or photosynthesis of the first leaves wasmeasured by infra-red gas analysis and porometry, respectively.To study the role of phosphoenolpyruvate carboxylase (PEPC),the dominant carboxylase in the carbon economy, its CO2 refixationpotentialwas related to the amount of CO2 lost in respiration. With arange of 0.2 (dry seeds) to 18 (cotyledons) µmol CO2 h–1g–1 PEPC activity resembled or exceeded the amount ofC02 lost in respiration before the third leaf developed. Itis concludedthat PEPC largely contributes to economize the carbonmetabolism of apple seedlings before they become photosyntheticallycompetent. Key words: Apple (Malus pumila Mill.) seedling, carbon economy, phosphoenolpyruvate carboxylase, photosynthesis, respiration  相似文献   

13.
L. C. HO   《Annals of botany》1979,43(4):437-448
Simultaneous measurement of export from leaves and import tofruits were made on tomato plants reduced to one fully expandedleaf and one fruit. Experimental leaves were exposed to sixlight flux densities (0.5–100 W m–2) for 24 h whilerapidly growing fruits were kept in the dark at 22 °C. The rates of export of assimilate from these leaves varied from70 to 120 mg C leaf–1 day–1 corresponding with ratesof carbon fixation from 3 to 290 mg C leaf–1 day–1.Export from leaves with the lowest carbon fixation rates weremaintained by a loss of up to one-sixth of their initial carbon.In contrast, leaves with the highest carbon fixation rates exportedonly half the newly fixed carbon. The rates of import of assimilate to similar-sized fruits (c.16 cm3) were between 80 and 110 mg C fr–1 day–1but differed from the export rates of the source leaves. Thespecific growth rates and the specific respiration rates ofthe fruits were related to their initial carbon content at thebeginning of the experiment. Thus, over 24 h, the rate of importwas predetermined by the developmental stage of the fruit unalteredby the rate of current carbon fixation in the source leaf. Translocationof assimilate was regulated by sink demand under both source-and sink-limiting conditions in this short-term situation. The dynamic relationship between assimilate production in leavesand its utilization in fruits is discussed together with therole of sucrose concentration in these organs in regulatingtransport. Lycopersicon esculentumL, tomato assimilate translocation, source-sink relationships  相似文献   

14.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

15.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities (PPFD) of 150 to 950µmolphotons m–2 s–1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO2 m–2 s–1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytimePPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning  相似文献   

16.
Reducing the concentration of sucrose in the culture mediumover successive subcultures has been tested as a method forincreasing the ability of rose shoots grown in vitro (Rosa cvsIceberg and Peace) to take up CO2. Shoots maintained on ‘constant’10, 20 and 40 g I–1 sucrose showed decreased levels ofCO2 uptake at higher sucrose concentrations, although cv. Peacegrew least at 10 g l–1 and showed correspondingly lowamounts of CO2 uptake compared with 20 and 40 g l–1. Bothcultivars died when sucrose was omitted from the medium. Assucrose concentration was reduced in the medium, so CO2 uptakeof shoots initially cultured on 20 and 40 g l–1 sucrosewas found to increase, although a concentration of 10 gl –1sucrose seemed to be limiting, below which the growth and chlorophylllevels of shoots declined. Rosa hybrid, rose, shoot culture in vitro, photosynthetic ability, sucrose, infra-red gas analysis  相似文献   

17.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

18.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

19.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

20.
WILSON  D.; JONES  J. G. 《Annals of botany》1982,49(3):313-320
Growth and nutritive quality of two polycross progeny (GL 83and GL 112) from F1 plants of Lolium perenne ex cv. S23 showingslow dark respiration rates of mature leaves were compared inthe field with S23 in 3 years. Plots were cut either nine (simulatedgrazing) or five (conservation) times annually. In the firsttrial, sown in 1977, dry matter yields from plots of GL 83 werecompared with S23 during 1978 and 1979. A similar trial sownin 1979 compared GL 83, S23 and GL 112 during 1980. The slowrespiration populations displayed consistently greater (6–13per cent) annual dry matter yields than S23, mostly during midto late summer. In the first trial the difference in yield wasgreater in 1979 than 1978 and more under conservation than simulatedgrazing. In the second trial GL 83 and GL 112 yielded 11 and13 per cent more dry matter than S23 under simulated grazingand 5–6 per cent under conservation. There were no consistentdifferences in dry matter digestibility, water soluble carbohydratesor protein between the populations. Cellulose content of GL83 and to a much lesser extent GL 112, tended to be greaterthan that of S23 from July to September. Analysis of one harvestfrom another trial revealed no significant difference in energyvalue, as measured by adiabatic bomb calorimetry, between GL83 and S23. Thus, it appears that the greater dry matter productionof the progeny with slower mature leaf dark respiration ratesreflected a true increase in total energy yield not apparentlyassociated with any agronomically undesirable characteristics.The general significance of the results for crop improvementare discussed. Lolium perenne L., perennial ryegrass, yield of dry matter, energy value, dry matter digestibility  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号