首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The alpha-carbethoxypentadecyltrimethylammonium (Septonex) salt of tRNA (Ib) was condensed with ethyl N-benzyloxycarbonylorthoglycinate (II) in dimethylformamide in vacuo and in the presence of H3PO4 as catalyst. Pancreatic RNAase degradation and phenylalanine acceptor activity showed a 55--60% conversion to the 2',3'-cyclic orthoglycinate derivative of tRNA (IIIb). The orthoester grouping of IIIb was quantitatively hydrolyzed in 80% formic acid at 0 degrees C for 15 min to give 2'(3')-O-(N-benzyloxycarbonyl)glycyl tRNA (IVb). The latter was stripped at pH 8.8 to give tRNA whose behavior on DEAE cellulose column and gel electrophoresis was similar to that of starting tRNA. The phenylalanine acceptor activity amounted to almost 80% of the starting tRNA.  相似文献   

2.
Treatment of Escherichia coli CA265 phenylalanyl-tRNA with 3M-NaHSO3, pH6.0, at 25 degrees C resulted in modification of four bases and in the deacylation of the charged tRNAphe. The similarity of the rates of base modification and of the deacylation of the phenylalanyl-tRNA permitted the isolation of partially modified phenylalanyl-tRNAphe and partially modified deacylated tRNAphe. The sites and extents of base modification in these fractions were determined and found to be the same as those in uncharged tRNAphe modified under identical conditions. These findings are discussed in relation to previous evidence for and against a conformational change in tRNA on its aminoacylation. The methods described should prove adaptable to study of other aminoacyl-tRNA species.  相似文献   

3.
Purified Escherichia coli tRNAAla and tRNALys were each converted to modified species terminating in 2'- and 3'-deoxyadenosine. The modified species were tested as substrates for activation by their cognate aminoacyl-tRNA synthetases and for misacylation with phenylalanine by yeast phenylalanyl-tRNA synthetase. E. coli alanyl- and lysyl-tRNA synthetases normally aminoacylate their cognate tRNA's exclusively on the 3'-OH group, while yeast phenylalanyl-tRNA synthetase utilizes only the 2' position on its own tRNA. Therefore, the finding that the phenylalanyl-tRNA synthetase activated only those modified tRNAAla and tRNALys species terminating in 3'-deoxyadenosine indicated that the position of aminoacylation in this case was specified entirely by the enzyme, an observation relevant to the more general problem of the reason(s) for using a particular site for aminoacylation and maintaining positional specificity during evolution. Initial velocity studies were carried out using E. coli tRNAAla and both alanyl- and phenylalanyl-tRNA synthetases. As noted in other cases, activation of the modified and unmodified tRNA's had essentially the same associated Km values, but in each case the Vmax determined for the modified tRNA was smaller.  相似文献   

4.
B Ulmasov  A Topin  Z Chen  S H He    W R Folk 《Nucleic acids research》1998,26(22):5139-5141
Mutation of the Arabidopsis thaliana tRNA (Trp)(CCA) anticodon or of the A73 discriminator base greatly diminishes in vitro aminoacylation with tryptophan, indicating the importance of these nucleotides for recognition by the plant tryptophanyl-tRNA synthetase. Mutation of the tRNA (Trp)(CCA) anticodon to CUA so as to translate amber nonsense codons permits tRNA (Trp)(CCA) to be aminoacylated by A.thaliana lysyl-tRNA synthetase. Thus, translational suppression by tRNA (TRP)(CCA) observed in plant cells includes significant incorporation of lysine into protein.  相似文献   

5.
tRNA's modifications bring order to gene expression   总被引:3,自引:0,他引:3  
  相似文献   

6.
The RNA world hypothesis implies that coded protein synthesis evolved from a set of ribozyme catalyzed acyl-transfer reactions, including those of aminoacyl-tRNA synthetase ribozymes. We report here that a bifunctional ribozyme generated by directed in vitro evolution can specifically recognize an activated glutaminyl ester and aminoacylate a targeted tRNA, via a covalent aminoacyl-ribozyme intermediate. The ribozyme consists of two distinct catalytic domains; one domain recognizes the glutamine substrate and self-aminoacylates its own 5'-hydroxyl group, and the other recognizes the tRNA and transfers the aminoacyl group to the 3'-end. The interaction of these domains results in a unique pseudoknotted structure, and the ribozyme requires a change in conformation to perform the sequential aminoacylation reactions. Our result supports the idea that aminoacyl-tRNA synthetase ribozymes could have played a key role in the evolution of the genetic code and RNA-directed translation.  相似文献   

7.
8.
Purpuromycin, an antibiotic produced by Actinoplanes ianthinogenes, had been reported previously to inhibit protein synthesis. In the present report, we demonstrate that the mechanism of action of this antibiotic is quite novel in that it binds with fairly high affinity to all tRNAs, inhibiting their acceptor capacity. Although more than one molecule of purpuromycin is bound to each tRNA molecule, the inhibitory activity of this antibiotic was found to be selective for the tRNA acceptor function; in fact, after the aminoacylation step, purpuromycin was found to affect none of the other tested functions of tRNA (interaction with the ribosomal P- and A-sites and interaction with translation factors). Accordingly, purpuromycin was found to inhibit protein synthesis only when translation depended on the aminoacylation of tRNA and not when the system was supplemented with pre-formed aminoacyl-tRNAs. Because purpuromycin did not interfere with the ATP-PPi exchange reaction of the synthetase or with the initial interaction of the enzyme with its tRNA substrate, the basis for the inhibition of aminoacylation is presumably the formation of a nonproductive synthetase-tRNA complex in the presence of purpuromycin in which the tRNA is unable to be charged with the corresponding amino acid.  相似文献   

9.
Specific inhibition of mammalian lysyl-tRNA synthetase by polyU is shown. Inhibition of the enzyme is dependent on the length of the oligonucleotide, since oligoU molecules with a length of less than 8 residues do not inhibit the aminoacylation, whilst the effect of oligoU molecules with a length of about 30 residues is the same as that of polyU. Inhibition is a result of recognition by the enzyme of the tRNALys anticodon sequence (UUU) coded by polyU. Aminoacylation of the oligoU molecule with attached CCA sequence (G(U)20-CCA) by yeast and mammalian lysyl-tRNA synthetases is demonstrated.  相似文献   

10.
11.
A new assay for tRNA aminoacylation kinetics.   总被引:2,自引:1,他引:2       下载免费PDF全文
An improved quantitative assay for tRNA aminoacylation is presented based on charging of a nicked tRNA followed by separation of an aminoacylated 3'-fragment on an acidic denaturing polyacrylamide gel. Kinetic parameters of tRNA aminoacylation by Escherichia coli AlaRS obtained by the new method are in excellent agreement with those measured by the conventional method. This assay provides several advantages over the traditional methods of measuring tRNA aminoacylation: (1) the fraction of aminoacyl-tRNA is measured directly; (2) data can be obtained at saturating amino acid concentrations; and (3) the assay is significantly more sensitive.  相似文献   

12.
13.
J P Shi  S A Martinis  P Schimmel 《Biochemistry》1992,31(21):4931-4936
Previous work established that seven-base-pair hairpin microhelices with sequences based on the acceptor stems of alanine, glycine, methionine, and histidine tRNAs can be aminoacylated specifically with their cognate amino acids. To obtain "minimalist" substrates with fewer base pairs, we took advantage of the high thermodynamic stability of RNA tetraloop motifs that are found in ribosomal RNAs. We show here that rationally designed RNA tetraloops with as few as four base pairs are substrates for aminoacylation. Major nucleotide determinants for recognition by the class II synthetases were incorporated into each of the respective tetraloop substrates, resulting in specific aminoacylation by the alanine, glycine, and histidine tRNA synthetases. An analysis of the kinetics of aminoacylation shows that, for the alanine system, the majority of the transition-state stabilization provided by the synthetase-tRNA interaction is reproduced by the interaction of the synthetase with nucleotides in its minimalist tetraloop substrate. In an extension of this work, we also observed specific aminoacylation with the class I methionine tRNA synthetase of RNA tetraloops based on sequences in the acceptor stem of methionine tRNA. Thus, the results demonstrate four different examples where specific aminoacylation is directed by sequences/structures contained in less than half of a turn of an RNA helix.  相似文献   

14.
G H Jones 《Biochemistry》1979,18(21):4542-4547
The effects of marcaine, a myotoxic drug, on the aminoacylation of transfer ribonucleic acid (rRNA) have been studied. The drug is a potent inhibitor of the acylation of rat liver tRNA with leucine and isoleucine but is only mildly inhibitory (or not inhibitory) to acylation with a number of other amino acids which were tested. Further, marcaine inhibited aminoacylation in cell-free systems using components from several mammalian tissues, including muscle, from yeast, and from wheat germ. No effect of the drug was observed in aminoacylation systems from several bacterial species which were tested. The drug inhibits acylation with leucine and isoleucine competitively but exhibited noncompetitive kinetics when the concentrations of adenosine 5'-triphosphate (ATP) and tRNA were varied. Marcaine was also a competitor of leucine in the ATP--pyrophosphate exchange reaction. Two structural analogues of marcaine, carbocaine and xylocaine, also inhibited acylation of rat liver tRNA with leucine but in a noncompetitive fashion. On a molar basis, marcaine appears to be the most effective inhibitor of the three drugs tested.  相似文献   

15.
In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.  相似文献   

16.
17.
Most of the isoacceptor species for a particular tRNA can be classified according to the middle base in the anticodon together with the fourth base in the amino acid stem. These specifying nucleotides would operate if a tRNA-tRNA interaction occurs on the aminoacyl-tRNA synthetase so that the anticodon of one tRNA molecule faces the fourth base of the other tRNA molecule. This model explains most of the misacylation reactions or changes in aminoacylation after mutation or chemical modifications of tRNAs. It also provides an explanation for biochemical properties of the aminoacyl-tRNA synthetases such as the presence of two active sites, and for the high fidelity of the aminoacylation. It may give insight into the origin and stability of the genetic code.  相似文献   

18.
Endothelial monocyte activating polypeptide II (EMAPII) is a cytokine that is specifically induced by apoptosis. Its precursor (pro-EMAPII) has been suggested to be identical to p43, which is associated with the multi-tRNA synthetase complex. Herein, we have demonstrated that the N-terminal domain of pro-EMAPII interacts with the N-terminal extension of human cytoplasmic arginyl-tRNA synthetase (RRS) using genetic and immunoprecipitation analyses. Aminoacylation activity of RRS was enhanced about 2.5-fold by the interaction with pro-EMAPII but not with its N- or C-terminal domains alone. The N-terminal extension of RRS was not required for enzyme activity but did mediate activity stimulation by pro-EMAPII. Pro-EMAPII reduced the apparent Km of RRS to tRNA, whereas the kcat value remained unchanged. Therefore, the precursor of EMAPII is a multi-functional protein that assists aminoacylation in normal cells and releases the functional cytokine upon apoptosis.  相似文献   

19.
Administration of estradiol to ovariectomized mature rats for 1 h induces a transient increase in the peptide elongation rate on uterine ribosomes. An inhibitor of the peptide elongation rate, which appears to be regulated by estrogen treatment in vivo, can be extracted from ribosomes of estrogen-deprived rats. The extracted inhibitor or a native inhibitor-ribosome complex affects the rate of the peptide elongation reaction in a uterine cell-free protein synthesis system by inhibiting the ability of selected tRNAs in the assay to be charged with amino acids by their respective aminoacyl-tRNA synthetases. The degree of inhibition of charging of the affected tRNAs ranges from 22% to 78%, the order of inhibition being Pro greater than Val greater than Arg greater than Try greater than Leu greater than Glu greater than Ile greater than Gly greater than His greater than Ser greater than Lys. Inhibition results from a specific dose-dependent, and presumably reversible, effect of the inhibitor on tRNA, but not on the aminoacyl-tRNA synthetase. The effect does not result from removal of A-C-C terminal nucleotides from the 3' end of tRNA, but does inhibit the ability of selected tRNAs to bind to the aminoacyl-tRNA synthetases. We propose that regulation of the peptide elongation rate on uterine ribosomes by estradiol occurs through the estradiol-induced inactivation of a ribosome-associated inhibitor, which causes a reversible alteration to selected tRNAs. The modified tRNAs are unable to bind to their respective aminoacyl-tRNA synthetase to become charged with an amino acid thus causing the availability of selected aminoacyl-tRNAs to become rate-limiting in the sequential elongation of peptides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号