首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We report the reconstruction, from a core-particle and split-protein fraction, of the larger subribosomal particle of rabbit reticulocytes. The reassembled particle was active in polyphenylalanine synthesis and in the puromycin reaction. The core-particles and split-protein fractions were obtained by treatment of the larger subparticle with salt solutions containing NH4+ and Mg2+ in the molar ratio 40:1 over the range 2.25-2.75 M-NH4Cl/56-69mM-MgCl2 at 0 degrees C. This treatment led to the loss of about eight proteins (approx. 17% of the protein moiety), which were found wholly or largely in the split-protein fraction as shown by two-dimensional gel electrophoresis. The core particle retained 5S rRNA and had much decreased (no more than 10% of control) ability to function in the puromycin reaction or in poly (U)-directed polyphenylalanine synthesis. Activity was recovered when the recombined core-particle and split-protein fractions were dialysed overnight at 4 degrees C against 0.3M-NH4Cl/15mM-MgCl2/1mM-dithiothreitol/15% (v/v) glycerol/20mM-Tris/HCl, pH 7.6, and then heated for 1 h at 37 degreesEES C. The recovery was 40-80% of the original activity. Raising the concentration of MgCL2 to 300 mM in 2.5 M-NH4CL led to the removal of seven rather than eight proteins, and the core particle remained active in the puromycin reaction. We infer that the protein retained by raising the concentration of Mg2+ is an essential component of the peptidyltransferase centre of the ribosome.  相似文献   

2.
The smaller subparticle of rabbit reticulocyte ribosomes was shown to yield core-particle and split-protein fractions on treatment with 2.5 M-NH4Cl/61 mM-MgCl2. The core-particle fraction was inactive in poly(U)-directed polyphenylalanine synthesis, but activity was restored after recombination with the split-protein fraction. Optimum ionic conditions for the reconstruction of active subparticles were found to be 0.75 M-NH4Cl/19 mM-MgCl2 at 0 degrees C. Improved extents of reconstruction were obtained when the core-particles were isolated by methods that avoided pelleting. Core-particles isolated from subparticles pretreated with either proteinases or ribonucleases had diminished capacity to become re-activated.  相似文献   

3.
It was shown that high-salt (2.75 M-NH4Cl/69mM-MgCl2) shock treatment at 0 degrees C of the larger subparticles (L-subparticles) of rabbit, Xenopus laevis and Neurospora crassa cytoplasmic ribosomes yielded split-protein fractions that were not only functionally equivalent but also interchangeable. Thus, although the remaining core-particles were inactive in both the puromycin reaction and in poly(U)-directed polyphenylalanine synthesis, activity was restored when they were combined with either homologous or heterologous split-protein fractions. This technique was used to prepare active hybrid L-subparticles, e.g. rabbit cores/N. crassa split-proteins, and also active hybrid ribosomes, e.g. rabbit smaller subparticle/X. laevis core-particle/rabbit split-proteins. Rabbit and X. laevis split-protein fractions labelled with 14C by reductive methylation with [14C]formaldehyde and sodium cyanoborohydride were both shown to bind to rabbit core-particles in approximate correlation with the degree of re-activation. The split-protein fractions of rabbit and X. laevis L-subparticles were analysed by two-dimensional and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The molecular weights (measured in sodium dodecyl sulphate gels) of the split-proteins of rabbit and X. laevis L-subparticles were found to be similar. These results demonstrate that the peptidyltransferase active centre of cytoplasmic ribosomes of eukaryotes has components that are interchangeable over a wide evolutionary range. Evidently the essential molecular architecture of the active centre is highly conserved.  相似文献   

4.
Larger ribosomal subparticles (L-subparticles) of rabbit ribosomes were treated with either ribonucleases (I or T1) or proteinases (trypsin or chymotrypsin), and their capacity to function in poly(U)-directed polyphenylalanine synthesis and in the puromycin reaction was investigated. The effects of pretreatment of L-subparticles on the reconstruction of active subparticles from core-particles derived by treatment with 2.75 M-NH4Cl/69 mM-MgCl2 and split-protein fractions were also examined. The protein moiety of proteinase-treated L-subparticles was analysed by one-dimensional sodium dodecyl sulphate/polyacrylamide- and two-dimensional polyacrylamide-gel electrophoresis. The introduction of 16--100 scissions in the RNA moiety had no effect on the activity of the L-subparticles in polyphenylalanine synthesis, and there was no effect on the stability of L-subparticles to high-salt shock treatment and a marginal effect on the reconstruction of L-subparticles from high-salt-shock core-particles and split-protein fractions. In contrast, L-subparticles treated with low amounts of trypsin (0.56 ng of trypsin/microgram of L-subparticle) were inactive in polyphenylalanine synthesis, and their capacity to function in partial-reconstruction experiments was diminished. Activity in the puromycin reaction was increased by 70% as a result of trypsin treatment (280 ng of trypsin/microgram of L-subparticle). At least two of the acidic proteins implicated in the translocation function were not affected by trypsin treatment. Trypsin-treated L-subparticles had lost their capacity to bind the smaller ribosomal subparticle (S-subparticle). The protein(s) needed for S-subparticle binding were shown to be present in high-salt-shock cores. At least six proteins associated with the core-particles were attack during trypsin treatment of L-subparticles. An examination of L-subparticles isolated from trypsin-treated polyribosomes showed that the amount of trypsin necessary to decrease the activity of the subparticle by 50% was about twice that needed in the treatment of L-subparticles alone. The largest protein of rabbit L-subparticles (approx. 51 000 daltons) was cleaved in a stepwise fashion by trypsin to fragments of approx. 40 000 daltons. This protein was also cleaved by chymotrypsin.  相似文献   

5.
We have developed a method for the large-scale isolation of active ribosomal subunits from human placenta. The technique involves incubating crude ribosomes for 15 min at 37 degrees C with 0.2 mM puromycin in 50 mM Tris-HCl buffer, pH 7.6, 500 mM KCl and 3 mM MgCl2 followed by centrifugation at 5 degrees C in a BXV zonal rotor using an equivolumetric sucrose gradient in the same buffer, upon which 80--90% of all ribosomes are dissociated into subunits. The purified subunits differ in their chemical composition, the 60-S particle containing no more than 36% protein whereas the 40-S subunit consists of 43% protein. In poly(U)-directed protein synthesis, tested in a completely homologous cell-free system, one recombined couple polymerizes at 37 degrees C 12 to 17 phenylalanine residues at an initial rate of 0.7 residues per minute. However, free 80-S ribosomes obtained by puromycin treatment of the crude ribosomes and reassociation of the subunits without prior isolation, have an even higher incorporating activity (20--25 mol phenylalanine/mol of ribosome). At least 55% of the subunits were estimated to actively participate in the polyphenylalanine synthesis.  相似文献   

6.
It was shown that the increase of Mg2+ ions concentration in the medium from 0,01 M to 0,03 M speeds up the formation of a codon-dependent complex between 14C-Phe-tRNA and the 30S ribosomal subparticle. Under high MgCl2 concentration (0,02 M) the increase of NH4Cl concentration also accelerates the specific binding of 14C-Phe-tRNA to the 30S subparticle. In the presence of 0,005 M MgCl2 0,5 M urea significantly decreases the rate of the specific binding. 0,5 M ethanol does not have any noticeable effect on the kinetics of the reaction.  相似文献   

7.
The functional activity of the wide-spread "tight" 70S ribosomes is usually equal to 55-80%. We show here that the inactive fraction of this type of ribosomes is virtually blocked by residual endogenous RNA's. These RNA's are shown to be removable by introducing an additional stage in the isolation procedure including: 1. short heating (15 min, 37 degrees C) of "tight" 70S under dissociation conditions, i. e. in a buffer containing 3 mM MgCl2 and 200 mM NH4Cl; 2. washing off endogenous RNA's on a sucrose density gradient in the same buffer; 3. final selection of purified "tight" 70S on the sucrose gradient containing 5 mM MgCl2 and 50 mM NH4Cl. "Tight" 70S ribosomes isolated by such a procedure are 90-100% active with respect to tRNA binding (including the factor-dependent one), peptide bond synthesis and translocation.  相似文献   

8.
Y Tsuda  T Nakamoto 《Biochemistry》1977,16(9):1814-1819
Two protein factors (A and B) have been partially purified from Escherichia coli supernatant which, in combination, are more effective than 0.5 M NH4Cl in stimulating ribosomes for AcPhe-tRNA and fMet-tRNA binding, for the puromycin reaction, and for incorporating acetylphenylalanine from AcPhe-tRNA into polypeptide. The factors appear to differ from the initiation factors, the elongation factor EF-T, and ribosomal proteins. Some uncertainty exists as to whether factor B is different from EF-G. To maximize the effect of the factors in initiator tRNA binding, we preincubated the ribosomes with the factors and carried out the binding assay for a short period at 15 degrees C. Maximal stimulation of binding occurred after about a 2-min preincubation at 37 degrees C. Longer preincubation times were required at 15 degrees C, and only slight stimulation was observed after preincubation at 0 degrees C. The extent of stimulation by the factors was not affected when the NH4Cl concentration was increased from 40 to 500 mM in the preincubation. The presence of both the 30S and 50S ribosomal subunits is required for the enhancement of AcPhe-tRNA binding. Polyphenylalanine synthesis carried out without AcPhe-tRNA is inhibited by the factors. It is suggested that the factors may act by inducing a structural rearrangement of the ribosomes.  相似文献   

9.
Bacillus megaterium N.C.T.C. no. 10342 exhibits glutamate synthetase (EC 2.6.1.53) and glutamate dehydrogenase (EC 1.4.1.4) activities. Concentrations of glutamate synthase were high when the bacteria were grown on 3mM-NH4Cl and low when they were grown on 100mM-NH4Cl, whereas glutamate dehydrogenase concentrations were higher when the bacteria were grown on 100mM-NH4Cl than on 3mM-NH4Cl. Glutamate synthase and glutamate dehydrogenase were purified to homogeneity from B. megaterium grown in 10mM-glucose/10mM-NH4Cl. The purified enzymes had mol.wts. 840000 and 270000 for glutamate synthase and glutamate dehydrogenase respectively. The Km values for substrates with NADPH and coenzyme were (glutamate synthase activity shown first) 9 micron and 360 micron for 2-oxoglutarate, 7.1 micron and 8.7 micron for NADPH, and 0.2 mM for glutamine and 22 mM for NH4Cl, similar values to those of enzymes from Escherichia coli. Glutamate synthase contained NH3-dependent activity (different from authentic glutamate dehydrogenase), which was enhanced 4-fold during treatment at pH 4.6 NH3-dependent activity was generally about 2% of the glutamine-dependent activity. Amidination of glutamate synthase by the bi-functional cross-linking reagent dimethyl suberimidate inactivated glutamine-dependent glutamate synthase activity, but increased NH3-dependent activity. A cross-linked structure of mol.wt. approx 200000 was the main product formed.  相似文献   

10.
The amount of urea synthesized in intact guinea pig hepatocytes in 60 min ([urea]t=60), was determined at 37 degrees C in Krebs-Henseleit buffer plus (in mM) 10 NH4Cl, 5 lactate, and 10 ornithine in 5% CO2-95% O2. The concentrations of sulfonamide carbonic anhydrase (CA) inhibitors required to reduce the rate of urea synthesis by 50% (I50) were (in mM): 0.07 ethoxzolamide, 0.5 methazolamide, 0.7 acetazolamide, and 5.0 p-aminomethylbenzenesulfonamide. At 37 degrees C acetazolamide and ethoxzolamide reduced citrulline synthesis by intact mitochondria in medium containing (in mM) 50 3-(N-morpholino)propanesulfonic acid, 35 KCl, 5 KH2PO4, 2 adenosine triphosphate, 10 ornithine, 10 NH4Cl, 1 [ethylene-bis(oxyethylenenitrile)]tetraacetic acid, 1 MgCl2, 20 pyruvate, and 25 KHCO3 (pH 7.4) in 5% CO2-95% O2; the inhibition by ethoxzolamide was not decreased greater than 50%; 25% inhibition was achieved by 0.65 microM ethoxzolamide. Inhibition constant (Ki) values for CA activity of disrupted mitochondria at 37 degrees C were 0.03 microM ethoxzolamide and 0.16 microM acetazolamide, and for disrupted hepatocytes were 150 microM ethoxzolamide and 50 microM acetazolamide. p-Aminomethylaminosulfonamide-affinity column purification yields one band of 29,000 mol wt for CA V purified from disrupted mitochondria; homogenized whole-liver supernatant yields an additional band of 20,000 mol wt (at greater than 100 times the concentration of CA V), which has some glutathione S-transferase activity. It is concluded that this 20,000-mol wt protein modifies the potency of ethoxzolamide in the liver cytosol.  相似文献   

11.
Human erythrocyte membranes (ghosts) prepared from fresh blood changed in shape from spherical to crenated, when suspended in 10(-7)-10(-6) M Ca2+-EGTA buffers. Although the ghosts from long-stored ACD blood (10 weeks) were less sensitive to 10(-7)-10(-6) M Ca2+, the ghosts obtained from this blood after it had been preincubated with adenine and inosine for 3 h at 37 degrees C were highly sensitive to Ca2+. When these highly sensitive ghosts were incubated in 10 mM Tris-Cl buffer (pH 7.4) or 1 mM MgCl2 (pH 7.4) at 0 degrees C, they gradually lost Ca2+ sensitivity within 60 min, but they recovered Ca2+ sensitivity again after re-incubation with 2 mM Mg-ATP for 20 min at 37 degrees C followed by washing with 1 mM MgCl2 (pH 7.4). The shape of these highly Ca2+-sensitive ghosts immediately changed from crenate to disc on addition of 1 mM Mg-ATP even at 6 degrees C in the presence of 10(-7)-10(-6) M Ca2+. A similar shape change was also observed when ghosts treated with 0.5% Triton X-100 (Triton shells) were used. Triton shells from fresh blood ghosts or from long-stored blood ghosts which had been preincubated with 2 mM Mg-ATP for 20 min at 37 degrees C shrank immediately in the presence of 10(-6) M Ca2+ and then swelled on addition of 1 mM Mg-ATP. The specificity to ATP and the dependency on ATP concentration are in agreement with those of the ghost shape change at step 2 (Jinbu, Y. et al., Biochem biophys res commun 112 (1983) 384-390) [18]. These results suggest that cytoskeletal protein phosphorylation enhances sensitivity to Ca2+ and induces erythrocyte shape change in the presence of physiological concentrations of ATP and Ca2+.  相似文献   

12.
Spectral analysis of light scattered from solutions of 30 S subunits was performed by the method of regularization of the inverse spectral problem. The subunits observed under ionic conditions which preserved their biological activity (200 mM NH4Cl at 1 mM MgCl2) revealed a monodisperse pattern of scattering with diffusion constant D = (1.83 +/- 0.10) X 10(-7) cm2/s. The polydispersity and compaction of 30 S subunits were observed under inactivation ionic conditions (30 mM NH4Cl at 1 mM MgCl2). The number of compacted particles correlates with the irreversible loss of biological activity, the ability of 30 S subunits to bind specific tRNA.  相似文献   

13.
The R-form lipopolysaccharide (LPS) from Klebsiella strain LEN-111 (O3-:K1-) forms a hexagonal lattice structure with a lattice constant of 14 to 15 nm when it is precipitated by addition of two volumes of 10 mM MgCl2-ethanol. The stability of this hexagonal lattice structure in long-term incubation at 4 C was investigated. The hexagonal lattice structure was stable for at least 220 days when the LPS was suspended in distilled water, but it had been disintegrated into a rough mesh-like structure when the LPS was suspended in 50 mM tris(hydroxymethyl)aminomethane (Tris) buffer, pH 8.5, at 4 C for 60 days. Half of the Mg bound to the LPS was released when the LPS was suspended in Tris buffer for 60 days, whereas Mg was not released when it was suspended in distilled water even for 220 days. By contrast, it was stable for at least 220 days in Tris buffer containing 5 mM MgCl2. The LPS suspended in Tris buffer for 60 days, at which time the structure had been disintegrated, could be restored to the original hexagonal lattice structure within 24 hr by addition of 5 mM MgCl2. From these results it is concluded that the hexagonal lattice structure of the LPS retains long-range stability if Mg bound to the LPS is not released from the LPS.  相似文献   

14.
The ATPase (EC 3.6.1.3) activity of 30 S dynein from Tetrahymena cilia was remarkably stimulated by porcine brain tubulin at pH 10. The activity increased with increasing concentration of tubulin until the molar ratio of tubulin dimer to 30 S dynein reached approx. 10. The optimum of the ATPase activity of 30 S dynein in the presence of tubulin was 1-2 mM for MgCl2 and 2 mM for CaCl2. Increasing ionic strength gradually inhibited the stimulation effects of tubulin. Activation energies of 30 S dynein in the presence and absence of tubulin were almost the same. At the temperatures beyond 25 degrees C stimulation effects of tubulin disappeared. ATP was a specific substrate even in the presence of tubulin. In kinetic investigations parallel reciprocal plots were observed in a constant ratio of divalent cations to ATP of 2, indicating that tubulin was less tightly bound to 30 S dynein in the presence of ATP than the absence. The similar results were obtained at pH 8.2. 14 S dynein and the 12 S fragment which have poor ability to recombine with outer fibers were also activated with brain tubulin.  相似文献   

15.
Previously, we reported the biochemical properties of RGA1 that is expressed in Escherichia coli (Seo et al., 1997). The activities of RGA1 that hydrolyzes and binds guanine nucleotide were dependent on the MgCl(2) concentration. The steady state rate constant (k(cat) ) for GTP hydrolysis of RGA1 at 2 mM MgCl(2) was 0.0075 +/- 0.0001 min(-1). Here, we examined the effects of pH and cations on the GTPase activity. The optimum pH at 2 mM MgCl(2) was approximately 6.0; whereas, the pH at 2 mM NH(4)Cl was approximately 4.0. The result from the cation dependence on the GTPase (guanosine 5'-triphosphatase) activity of RGA1 under the same condition showed that the GTP hydrolysis rate (k(cat)= 0.0353 min(-1)) under the condition of 2 mM NH(4)Cl at pH 4.0 was the highest. It corresponded to about 3.24-fold of the k(cat) value of 0.0109 min(-1) in the presence of 2 mM MgCl(2) at pH 6.0.  相似文献   

16.
Metabolism of ochratoxin A by primary cultures of rat hepatocytes.   总被引:5,自引:4,他引:1       下载免费PDF全文
Association of ochratoxin A with cultured rat hepatocytes occurs at 4 degrees C, and the saturation level in the medium is 0.3 mM ochratoxin A, with maximal binding after 60 min. At 37 degrees C the level of cell-associated ochratoxin A increased up to 6 h and remained at 2 nmol of toxin per mg of cell protein for 30 h. With increasing concentrations of ochratoxin A, increasing amounts of the toxin accumulated in the cells; saturation occurred at a concentration of 0.3 mM. Ochratoxin A was metabolized by hepatocytes at 37 degrees. (4R)-4-Hydroxyochratoxin A appeared in the medium at a maximal level (about 30 nmol/mg of cell protein) at an ochratoxin A concentration of 0.25 mM after 48 h of incubation. Small amounts of (4S)-4-hydroxyochratoxin A were detected only after incubation for 22 h or longer.  相似文献   

17.
Arginine inhibits the formation of acetylleucyl-puromycin from C(U)-A-C-C-A-LeuAc and puromycin ('fragment reaction'), catalized by Escherichia coli and yeast ribosomes. From 18 different L-amino acids assayed, arginine was the most effective in producing inhibition (50% inhibition at 20 mM, with 1 mM puromycin). L-Argininamide and D-arginine gave about the same inhibition as L-arginine. The inhibition by L-arginine is competitive with respect to puromycin. The plot of the slopes obtained in a Lineweaver and Burk representation versus [Arg]2, and the plot of 1/v versus [Arg]2 at a fixed concentration of puromycin, are linear, which seems to indicate that two arginine molecules must interact at the puromycin binding site to produce inhibition. In addition to the 'fragment reaction', arginine inhibits the non-enzymatic binding of AcPhe-tRNA, C(U)-A-C-C-A-Leu and C(U)-A-C-C-A-LeuAc to ribosomes. However, it does not inhibit poly(U)-directed polyphenylalanine synthesis or the reaction of puromycin with AcPhe-tRNA previously bound to the peptidyl site. The results agree with arginine binding to the acceptor site, and with a sequential mechanism for the 'fragment reaction', puromycin binding first.  相似文献   

18.
Human tonsillar 80-S ribosomes were 17% and 43% inactivated by 1 mM N-ethylmaleimide after 12 min at 30 or 37 degrees C, respectively. The ribosomes were unaffected by the reagent during the same period of time at 0 or 20 degrees C. 4, 12, 27 and 59 sulfhydryl groups per 80-S ribosomes were found labeled by 1 mM N-ethyl[14C] maleimide after 12 min at 0, 20, 30 or 37 degrees C, respectively. The analysis of radioactively labeled proteins by two-dimensional gel electrophoresis revealed the following: after 3 min at 37 degrees C only two 40-S proteins, S3 and S7, displayed a significant amount of label. After 12 min at 37 degrees C, there was a several-fold increase in the extent of radioactivity found in each of these proteins and, additionally, S1, S2, S4, S5, S15, S22 and S31 were also found among labeled 40-S proteins. S3 appeared to be the most N-ethylmaleimide-reactive 40S protein. After 3 min at 37 degrees C, L10, L17, L20 (and/or S20), L26, L32 and L33, and after 12 min at 37 degrees C, additionally L1, L2, L7, L9, L11, L15, L16, L18, and L25 were labeled among 60-S proteins. l17 and 32 were the most N-ethylmaleimide-reactive proteins under these conditions. After 12 min at 37 degrees C, approx. 26% and 39% of the radioactivity incorporated into the 80 S or 60 S ribosomal protein, respectively, was found in these two proteins. After 12 min at 0 degrees C, S3, L17, L32 and L33 were the only labeled proteins.  相似文献   

19.
We have investigated the formation of the aa-tRNA X EF-Tu X GTP ternary complex spectroscopically by monitoring a fluorescence change that accompanies the association of EF-Tu X GTP with Phe-tRNAPhe-F8, a functionally active analogue of Phe-tRNAPhe with a fluorescein moiety covalently attached to the s4U-8 base. With this approach, the protein-nucleic acid interaction could be examined by direct means and at equilibrium. The fluorescence emission intensity of each Phe-tRNAPhe-F8 increased by 36-55% upon association with EF-Tu X GTP, depending on the solvent conditions. Thus, when Phe-tRNAPhe-F8 was titrated with EF-Tu X GTP, the extent of ternary complex formation was determined from the increase in emission intensity. A nonlinear least-squares analysis of the titration data yielded a dissociation constant of 0.85 nM for the ternary complex in 50 mM N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (pH 7.6), 10 mM MgCl2, and 50 mM NH4Cl, at 6 degrees C. The delta H degrees of this interaction, determined by the temperature dependence of Kd, was -16 kcal/mol; the delta S degrees was therefore -16 cal mol-1 deg-1 at 6 degrees C in this buffer. In a more physiological polycation-containing solvent ("polymix"), the Kd was 4.7 nM. The ionic strength dependence of ternary complex formation showed that a minimum of two salt bridges and a substantial nonelectrostatic contribution are involved in the binding of aa-tRNA to EF-Tu. The affinities of unmodified aa-tRNAs for EF-Tu X GTP were determined by their abilities to compete with the fluorescent aa-tRNA for binding to the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The specific glucocorticoid receptor binding of rat liver cytosol was very unstable in vitro at 25 and 4 degrees C. However, 5 mM CaCl2 added with 5 mM EDTA to cytosol prior to incubation markedly stabilized unbound glucocorticoid receptors at both temperatures. Optimal effectiveness was achieved using equimolar (5 mM) amounts of CaCl2 and EDTA. On the other hand, 5 mM CaCl2 (added alone) further destabilized the unbound glucocorticoid receptor, while 5 mM EDTA (added alone) had no effect at 25 degrees C. EGTA (in lieu of EDTA) added with CaCl2 stabilized hepatic receptor binding at 25 degrees C. On the other hand, citrate added with calcium was ineffective in stabilizing the hepatic glucocorticoid receptor. MgCl2 effectively replaced CaCl2 as a stabilizing agent at 25 degrees C if added with 5 mM EDTA. When added alone, MgCl2 slightly destabilized the unbound receptor. Sucrose density gradient analysis (in low salt) revealed that CaCl2 plus EDTA enhanced the steroid-receptor complex sedimentation coefficient from 7 S to about 10 S. Unlike molybdate, CaCl2 plus EDTA had no apparent effect on steroid-receptor complex thermal transformation into a nuclear binding form, while MgCl2 plus EDTA partially reduced transformation. These results suggest a novel means to chemically stabilize unbound hepatic glucocorticoid receptors in vitro which may be of particular importance for receptor purification studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号