首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A very high density of stereospecific binding sites for inositol-(1,4,5)P3 have been identified in rat cerebellar membranes using [3H]inositol-(1,4,5)P3 and a rapid centrifugation step to separate free and bound ligand. Binding was shown to be rapid and reversible and of relatively high affinity (KD 23 nM). Incubations were carried out at 4 degrees and under these conditions HPLC analysis demonstrated that there was no significant metabolism of [3H]-(1,4,5)P3 in the presence or absence of ATP over 15 min. The specificity of the site has been carefully evaluated using both natural and novel synthetic inositol phosphates. The stereospecificity is very marked with the D-, DL- and L-isomers of Ins(1,4,5)P3 showing a 1:4:2000 ratio of affinity for the binding site. D-Ins(2,4,5)P3 was the only other phosphate to show relatively high affinity (KD 1500 nM). HPLC-pure Ins(1,3,4)P3 and Ins(1,3,4,5)P4 were substantially weaker and Ins(1,4)P2, Ins-2-P1, Ins-1-P1, Ins(1,2)-cyclic P1 and inositol were totally inactive at concentrations less than 50 microM. These data are discussed in relation to a putative receptor on the endoplasmic reticulum by which Ins(1,4,5)P3 can initiate the release of bound Ca2+.  相似文献   

2.
D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate [D-6-deoxy-Ins(1,3,4,5)P(4)] 3 is a novel deoxygenated analogue of D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)] 2, a central and enigmatic molecule in the polyphosphoinositide pathway of cellular signalling. D-6-Deoxy-Ins(1,3,4,5)P(4) is a moderate inhibitor of Ins(1,4,5)P(3) 5-phosphatase [1.8microM] compared to Ins(1,3,4,5)P(4) [0.15microM] and similar to that of L-Ins(1,3,4,5)P(4) [1.8microM]. In displacement of [(3)H] Ins(1,4,5)P(3) from the rat cerebellar Ins(1,4,5)P(3) receptor, while slightly weaker [IC(50)=800nM] than that of D-Ins(1,3,4,5)P(4) [IC(50)=220nM], 3 is less markedly different and again similar to that of L-Ins(1,3,4,5)P(4) [IC(50)=660nM]. 3 is an activator of I(CRAC) when inward currents are measured in RBL-2H3-M1 cells using patch-clamp electrophysiological techniques with a facilitation curve different to that of Ins(1,3,4,5)P(4). Physicochemical properties were studied by potentiometric (31)P and (1)H NMR titrations and were similar to those of Ins(1,3,4,5)P(4) apart from the observation of a biphasic titration curve for the P1 phosphate group. A novel vicinal phosphate charge-induced conformational change of the inositol ring above pH 10 was observed for D-6-deoxy-Ins(1,3,4,5)P(4) that would normally be hindered because of the central stabilising role played by the 6-OH group in Ins(1,3,4,5)P(4). We conclude that the 6-OH group in Ins(1,3,4,5)P(4) is crucial for its physicochemical behaviour and biological properties of this key inositol phosphate.  相似文献   

3.
F Donié  G Reiser 《FEBS letters》1989,254(1-2):155-158
A membrane preparation from porcine cerebellum displays high-affinity binding sites for [3H]inositol 1,3,4,5-tetrakisphosphate ([3H]InsP4) with a dissociation constant (Kd) of 1.0 nM and a density of 220 fmol/mg protein. Specific binding was maximal in the presence of 25 mM phosphate and at pH 5.0. The receptor site was specific for InsP4, since Ins(1,3,4,5,6)P5 and Ins(1,4,5,6)P4 displaced binding of InsP4 with EC50 values of 0.2 and 0.3 microM, respectively. Ins(1,4,5)P3 and other inositol phosphates were less effective. Using this InsP4 receptor, an assay for measuring tissue content of InsP4 was developed. The detection limit of the assay was 0.1 pmol. In the same tissue samples the amount of Ins(1,4,5)P3 was determined in parallel with a similar assay using a binding protein preparation from beef liver.  相似文献   

4.
1. The characterization of a radioreceptor assay for determining Ins(1,4,5)P3 concentration in tissue extracts is described which utilizes the binding of [3H]Ins(1,4,5)P3 to an adrenal-cortex membrane fraction. 2. Analysis of [3H]Ins(1,4,5)P3 binding by isotope dilution demonstrated an apparent single population of binding sites (KD 3.65 +/- 0.18 nM, Bmax. 872 +/- 70 fmol/mg of protein). Specific binding of [3H]Ins(1,4,5)P3 was enhanced at alkaline pH values (maximum at pH 8.5), with complete loss of specific binding at pH less than 6. These binding sites displayed strict stereo- and positional specificity for Ins(1,4,5)P3, with L-Ins(1,4,5)P3, Ins(1,3,4)P3 and DL-Ins(1,3,4,5)P4 causing 50% displacement of specific [3H]Ins(1,4,5)P3 binding (IC50 values) at concentrations of 14 +/- 3 microM, 3.0 +/- 0.3 microM and 0.53 +/- 0.03 microM respectively. 3. Kinetic analysis of binding data, however, revealed a high-affinity [3H]Ins(1,4,5)P3 binding site (KD 0.052 nM) in addition to the lower-affinity site (KD 2.53 nM) already demonstrated in displacement studies. 4. It is shown that the presence of the high-affinity site can be exploited to increase the sensitivity of the [3H]Ins(1,4,5)P3 radioreceptor assay, allowing accurate detection of 20 fmol of Ins(1,4,5)P3 in 300 microliters of tissue extract. 5. Further validation of the specificity of the above assay for Ins(1,4,5)P3 was provided by incubating tissue extracts with either a 5-phosphatase or 3-kinase preparation. It was shown that identical loss occurred of both Ins(1,4,5)P3 mass and [3H]Ins(1,4,5)P3, added to parallel incubations. 6. The ability of the assay to measure basal and agonist-stimulated increases in Ins(1,4,5)P3 concentration has been demonstrated with rat cerebral cortex and bovine tracheal smooth-muscle slices and a range of cultured and isolated cell preparations.  相似文献   

5.
The binding of [3H]Ins(1,4,5)P3 to bovine adrenocortical microsomes has been shown to be rapid, reversible and saturable. The microsomal preparation contained a single population of high affinity sites (KD = 6.82+/-2.3 nM, Bmax = 370+/-38 fmol/mg protein). The binding site was shown to exhibit positional specificity with respect to inositol trisphosphate binding, i.e. Ins(2,4,5)P3 was able to compete with [3H]Ins(1,4,5)P3 whereas Ins(1,3,4)P3 was not. Ins(1,3,4,5)P4 showed a similar affinity for the receptor as Ins(2,4,5)P3 whereas the other inositol phosphates tested, ATP, GTP and 2,3-DPG, were poor competitors. [3H]Ins(1,4,5)P3-binding was independent of free Ca2+ concentrations. The adrenocortical microsomal preparation has been incorporated into an assay which has been used to determine the basal and vasopressin-stimulated content of neutralised acid extracts of rat hepatocytes. Intracellular concentrations of Ins(1,4,5)P3 were calculated to be 0.22+/-0.15 microM basal and 2.53+/-1.8 microM at peak stimulation. This assay provides a simple, specific and quantitative method for the measurement of Ins(1,4,5)P3 concentrations in the picomolar range.  相似文献   

6.
We have synthesized two photolabile arylazido-analogues of Ins(1,4,5)P3 selectively substituted at the 1-phosphate group for determination of Ins(1,4,5)P3-binding proteins. These two photoaffinity derivatives, namely N-(4-azidobenzoyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AbaIP3) and N-(4-azidosalicyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AsaIP3), bind to high affinity Ins(1,4,5)P3-specific binding sites at a 9-fold lower affinity (Kd = 66 and 70 nM) than Ins(1,4,5)P3 (Kd = 7.15 nM) in a fraction from rat pancreatic acinar cells enriched in endoplasmic reticulum (ER). Other inositol phosphates tested showed comparable (DL-myo-inositol 1,4,5-trisphosphothioate, Kd = 81 nM) or much lower affinities for the binding sites [Ins(1,3,4,5)P4, Kd = 4 microM; Ins(1,4)P2, Kd = 80 microM]. Binding of AbaIP3 was also tested on a microsomal preparation of rat cerebellum [Kd = 300 nM as compared with Ins(1,4,5)P3, Kd = 45 nM]. Ca2+ release activity of the inositol derivatives was tested with AbaIP3. It induced a rapid and concentration-dependent Ca2+ release from the ER fraction [EC50 (dose producing half-maximal effect) = 3.1 microM] being only 10-fold less potent than Ins(1,4,5)P3 (EC50 = 0.3 microM). From the two radioactive labelled analogues ([3H]AbaIP3 and 125I-AsIP3) synthesized, the radioiodinated derivative was used for photoaffinity labelling. It specifically labelled three proteins with apparent molecular masses of 49, 37 and 31 kDa in the ER-enriched fraction. By subfractionation of this ER-enriched fraction on a Percoll gradient the 37 kDa Ins(1,4,5)P3 binding protein was obtained in a membrane fraction which showed the highest effect in Ins(1,4,5)P3-inducible Ca2+ release (fraction P1). The other two Ins(1,4,5)P3-binding proteins, of 49 and 31 kDa, were obtained in fraction P2, in which Ins(1,4,5)P3-induced Ca2+ release was half of that obtained in fraction P1. We conclude from these data that the 37 kDa and/or the 49 and 31 kDa proteins are involved in Ins(1,4,5)P3-induced Ca2+ release from the ER of rat pancreatic acinar cells.  相似文献   

7.
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.  相似文献   

8.
The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.  相似文献   

9.
Glucose and carbamylcholine caused concentration-dependent increases in the production of total [3H]inositol phosphates in [3H]inositol-labelled rat pancreatic islets. When extracts from islets stimulated with glucose, carbamylcholine or depolarising concentrations of K+ were analysed using anion-exchange high performance liquid chromatography, increased production of [3H]Ins1,4,5-P3 was detected, and in addition, elevated levels of two other labelled compounds which co-chromatographed with Ins1,3,4-P3 and Ins1,3,4,5-P4. In the case of carbamylcholine and high K+, such an effect was apparent within 20 s, whereas glucose appeared to cause a delayed response. In the presence of 5 mM LiCl, the accumulation of Ins1,3,4-P3 was more marked. The presence of LiCl had no major influence on the levels of Ins1,4,5-P3 or Ins1,3,4,5-P4. It is suggested that the stimulation of pancreatic islets with glucose, carbamylcholine or high K+ results in the hydrolysis of inositol lipids with the production of Ins1,4,5-P3 and in addition, Ins1,3,4-P3 and Ins1,3,4,5-P4. The physiological functions of these novel inositol phosphates in islets remain to be established.  相似文献   

10.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

11.
Does the inositol tris/tetrakisphosphate pathway exist in rat heart?   总被引:2,自引:0,他引:2  
D Renard  J Poggioli 《FEBS letters》1987,217(1):117-123
Appearance of two isomers of inositol trisphosphate (InsP3) was observed when [3H]inositol prelabelled rat heart ventricles were stimulated for 10 and 30 s with noradrenaline. In contrast, inositol tetrakisphosphate (InsP4) could not be detected. However the existence of the inositol tris/tetrakisphosphate pathway was demonstrated by studying [3H]inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) metabolism in a soluble fraction of rat heart. There, [3H]Ins-1,4,5-P3 was phosphorylated to form [3H]Ins-1,3,4,5-P4. Raising [Ca2+] from 1 nM to 1 microM increased InsP3 kinase activity by 2-fold (EC50 for Ca2+ approx. 56 nM). This effect appeared to be due to an increase of the apparent Vmax of the enzyme while the apparent Km was unchanged.  相似文献   

12.
The accumulation of inositol polyphosphates in the cerebellum in response to agonists has not been demonstrated. Guinea pig cerebellar slices prelabeled with [3H]inositol showed the following increases in response to 1 mM serotonin: At 15 s, there was a peak in 3H label in the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], decreasing to a lower level in about 1 min. The level of 3H label in the putative second-messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] increased rapidly up to 60 s and increased slowly thereafter. The accumulation of 3H label in various inositol phosphate isomers at 10 min, when steady state was obtained, showed the following increases due to serotonin: inositol 1,3,4-trisphosphate [Ins(1,3,4)P3], eight-fold; Ins(1,3,4,5)P4, 6.4-fold; Ins(1,4,5)P3, 75%; inositol 1,4-bisphosphate [Ins(1,4)P2], 0%; inositol 3,4-bisphosphate, 100%; inositol 1-phosphate/inositol 3-phosphate, 30%; and inositol 4-phosphate, 40%. [3H]Inositol 1,3-bisphosphate was not detected in controls, but it accounted for 7.2% of the total inositol bisphosphates formed in the serotonin-stimulated samples. The fact that serotonin did not increase the formation of Ins(1,4)P2 could be due to the fact that Ins(1,4)P2 is rapidly degraded or that Ins(1,4,5)P3 is metabolized primarily by Ins(1,4,5)P3-3'kinase to form Ins(1,3,4,5)P4. In the presence of pargyline (10 microM), [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 levels were increased, even at 1 microM serotonin. Ketanserin (7 microM) completely inhibited the serotonin effect, indicating stimulation of serotonin2 receptors. Quisqualic acid (100 microM) also increased the levels of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3, but the profile of these increases was different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The role of phosphoinositide turnover in the mediation of acid secretion was examined in an enriched preparation of isolated rabbit parietal cells (75%). Both gastrin and CCK-8 (octapeptide of cholecystokinin) stimulated [14C]aminopyrine (AP) uptake by cells (EC50 0.07 +/- 0.03 nM (gastrin) and 0.093 +/- 0.065 nM (CCK-8] and increased [3H]inositol phosphates cellular contents (EC50 0.142 +/- 0.016 nM (gastrin) and 0.116 +/- 0.027 nM (CCK-8] in a parallel fashion. In addition, the EC50 values for both phenomenon were quite similar to the Kd values obtained from binding experiments. HPLC analysis of the different [3H]inositol phosphates produced under gastrin or CCK-8 stimulation showed a 2-fold increase in [3H]Ins(1,4,5)P3 levels within 5 s with a concomitant increase in [3H]Ins(1,4)P2 content within 15 s. A low but significant rise in [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 cellular contents was also observed. No difference between gastrin- and CCK-8-induced inositol phosphates production could be shown. We can conclude that gastrin and CCK-8 display an identical profile of action, suggesting that they stimulate the acid secretory function of parietal cells through the same receptor site coupled to the Ins(1,4,5)P3 production.  相似文献   

14.
We utilized high specific activity, [32P]-labelled ligands to measure the binding of Ins(1,3,4,5)P4 and Ins(1,4,5)P3 to membranes prepared from bovine parathyroid glands. [32P]Ins(1,3,4,5)P4 bound rapidly and reversibly to parathyroid membranes, and the binding data could be fitted by the interaction of the ligand with two sites, one with Kd = 6.8 x 10(-9) M and Bmax = 26 fmol/mg protein and a second, lower affinity site, with Kd = 4.1 x 10(-7) M and Bmax = 400 fmol/mg protein. InsP5 was 10-20 fold less potent than InsP4, and Ins(1,3,4)P3 and Ins(1,4,5)P3 were nearly 1000-fold less potent in displacing [32P]Ins(1,3,4,5)P4. [32P]Ins(1,4,5)P3, on the other hand, bound to a single class of sites with Kd = 7.6 x 10(-9) M and Bmax = 34 fmol/mg. While the binding of [32P]Ins(1,4,5)P3 increased markedly on raising pH from 5 to 8, the binding of [32P]Ins(1,3,4,5)P4 decreased by 75% over this range of pH. Thus, [32P]-labelled Ins(1,3,4,5)P4 and Ins(1,4,5)P3 may be used to identify distinct binding sites which may represent physiologically relevant intracellular receptors for InsP3 and InsP4 in parathyroid cells.  相似文献   

15.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

16.
Inositol-polyphosphate-induced Ca2+ mobilization was investigated in saponin-permeabilized SH-SY5Y human neuroblastoma cells. Ins(1,4,5)P3 induced a dose-related release from intracellular Ca2+ stores with an EC50 (concn. giving half-maximal effect) of 0.1 microM and a maximal release of 70%. Ins(1,3,4)P3, DL-Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5 did not evoke Ca2+ mobilization in these cells when used at concentrations up to 10 microM. However, Ins(1,3,4,5)P4 was found to release Ca2+ in a dose-related manner, but the response was dependent on the source of Ins(1,3,4,5)P4 used. When commercially available D-Ins(1,3,4,5)P4 was used, the EC50 and maximal response values were 1 microM and 50% respectively, compared with values for chemically synthesized DL-Ins(1,3,4,5)P4 of 2 microM and 25%. The enhanced maximal response of commercial D-Ins(1,3,4,5)P4 was decreased by pretreatment with rat brain crude Ins(1,4,5)P3 3-kinase and was therefore concluded to be indicative of initial Ins(1,4,5)P3 contamination of the Ins(1,3,4,5)P4 preparation. When metabolism of DL-Ins(1,3,4,5)P4 (10 microM) in these cells at 25 degrees C was investigated by h.p.l.c., substantial amounts of Ins(1,4,5)P3 (0.2 microM) and Ins(1,3,4)P3 (0.8 microM) were found to be produced within 3 min. Analysis of DL-Ins(1,3,4,5)P4 incubation with cells at 4 degrees C, however, indicated that metabolism had been arrested ([3H]Ins(1,4,5)P3 detection limits were estimated to be approx. 0.01 microM). When chemically synthesized DL-Ins(1,3,4,5)P4 and incubation conditions of low temperature were used, the Ca2(+)-releasing properties of this compound were established to be 1 microM and 19% for the EC50 and maximal response values respectively. The results obtained strongly suggest that Ins(1,3,4,5)P4 alone has the ability to release intracellular Ca2+. However, in the presence of sub-maximal concentrations of Ins(1,4,5)P3, Ca2+ release appears to be synergistic with Ins(1,3,4,5)P4, but at supramaximal concentrations not even additive effects are observed.  相似文献   

17.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

18.
Demonstration of inositol 1,3,4,5-tetrakisphosphate receptor binding   总被引:7,自引:0,他引:7  
Inositol 1,3,4,5-tetrakisphosphate (InsP4) is produced rapidly upon stimulation of the phosphoinositide system and may serve as a second messenger in hormone and neurotransmitter action. In this report we demonstrate specific binding sites for [3H]InsP4 in rat tissue membranes. In cerebellar membranes, [3H]InsP4 binding sites are displaced both by InsP4 and inositol 1,4,5-trisphosphate (InsP3) with similar potency (IC50 approximately equal to 300 nM) whereas several other inositol phosphates are much weaker. We have distinguished the InsP4 binding site from the InsP3 receptor binding site by differences in brain regional and tissue distribution, affinity for InsP4 and InsP3, and sensitivity to calcium.  相似文献   

19.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

20.
Inositol polyphosphates and intracellular calcium release   总被引:2,自引:0,他引:2  
The hydrolysis of inositol lipids triggered by the occupation of cell surface receptors generates several intracellular messengers. Many different inositol phosphate isomers accumulate in stimulated cells. Of these D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is responsible for discharging Ca2+ from intracellular stores. Specific membrane binding sites for Ins 1,4,5-P3 have been detected. The properties of these sites and their possible relationship to the calcium release process is reviewed. Ins 1,4,5-P3 binding sites may be present in discrete subcellular structures ("calciosomes"). Kinetic and some electrophysiological evidence indicates that Ins 1,4,5-P3 acts to open a Ca2+ channel. Recent progress on the purification of the receptor from neuronal tissues is summarized. Phosphorylation of Ins 1,4,5-P3 by a specific kinase results in the production of D-myo-inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5-P4). This inositol phosphate has been reported to increase the entry of Ca2+ across the plasma membrane, activate nonspecific ion channels in the plasma membrane, alter the Ca2+ content of the Ins 1,4,5-P3-releasable store, and bind to and alter the activity of certain enzymes. These data and the possible biological significance of Ins 1,3,4,5-P4 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号