首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aid of 1H nuclear magnetic resonance (NMR) spectroscopy, the three-dimensional structure in aqueous solution was determined for ATX Ia, which is a 46 residue polypeptide neurotoxin of the sea anemone Anemonia sulcata. The input for the structure calculations consisted of 263 distance constraints from nuclear Overhauser effects (NOE) and 76 vicinal coupling constants. For the structure calculation several new or ammended programs were used in a revised strategy consisting of five successive computational steps. First, the program HABAS was used for a complete search of all backbone and chi 1 conformations that are compatible with the intraresidual and sequential NMR constraints. Second, using the program DISMAN, we extended this approach to pentapeptides by extensive sampling of all conformations that are consistent with the local and medium-range NMR constraints. Both steps resulted in the definition of additional dihedral angle constraints and in stereospecific assignments for a number of beta-methylene groups. In the next two steps DISMAN was used to obtain a group of eight conformers that contain no significant residual violations of the NMR constraints or van der Waals contacts. Finally, these structures were subjected to restrained energy refinement with a modified version of the molecular mechanics module of AMBER, which in addition to the energy force field includes potentials for the NOE distance constraints and the dihedral angle constraints. The average of the pairwise minimal RMS distances between the resulting refined conformers calculated for the well defined molecular core, which contains the backbone atoms of 35 residues and 20 interior side chains, is 1.5 +/- 0.3 A. This core is formed by a four-stranded beta-sheet connected by two well-defined loops, and there is an additional flexible loop consisting of the eleven residues 8-18. The core of the protein is stabilized by three disulfide bridges, which are surrounded by hydrophobic residues and shielded on one side by hydrophilic residues.  相似文献   

2.
The three-dimensional structure of human [113Cd7]metallothionein-2 was determined by nuclear magnetic resonance spectroscopy in solution. Sequence-specific 1H resonance assignments were obtained using the sequential assignment method. The input for the structure calculations consisted of the metal-cysteine co-ordinative bonds identified with heteronuclear correlation spectroscopy, 1H-1H distance constraints from nuclear Overhauser enhancement spectroscopy, and spin-spin coupling constants 3JHN alpha and 3J alpha beta. The molecule consists of two domains, the beta-domain including amino acid residues 1 to 30 and three metal ions, and the alpha-domain including residues 31 to 61 and four metal ions. The nuclear magnetic resonance data present no evidence for a preferred relative orientation of the two domains. The polypeptide-to-metal co-ordinative bonds in human metallothionein-2 are identical to those in the previously determined solution structures of rat metallothionein-2 and rabbit metallothionein-2a, and the polypeptide conformations in the three proteins are also closely similar.  相似文献   

3.
The presence of bound water molecules in the solution structure of reduced human thioredoxin has been investigated using three-dimensional 1H rotating frame Overhauser 1H-15N multiple quantum coherence spectroscopy. It is demonstrated that the backbone amide protons of Lys21, Lys39, Lys82, Gly83 and Asn102, as well as the side-chain amide group of Asn102, are in close proximity to bound water molecules. Examination of the high-resolution solution structure of reduced human thioredoxin reveals that these results are best accounted for by four bound water molecules. Subsequent simulated annealing calculations carried out on the basis of interproton distance and hydrogen bonding restraints to the bound water molecules, supplemented by the original set of experimental restraints used in the calculation of the three-dimensional structure of human thioredoxin, permit a more precise localization of the bound water positions. Potential hydrogen bonds to these water molecules are described and a comparison is made to corresponding bound water molecules in the crystal structure of oxidized Escherichia coli thioredoxin.  相似文献   

4.
M Akke  T Drakenberg  W J Chazin 《Biochemistry》1992,31(4):1011-1020
The three-dimensional solution structure of native, intact porcine calbindin D9k has been determined by distance geometry and restrained molecular dynamics calculations using distance and dihedral angle constraints obtained from 1H NMR spectroscopy. The protein has a well-defined global fold consisting of four helices oriented in a pairwise antiparallel manner such that two pairs of helix-loop-helix motifs (EF-hands) are joined by a linker segment. The two EF-hands are further coupled through a short beta-type interaction between the two Ca(2+)-binding loops. Overall, the structure is very similar to that of the highly homologous native, minor A form of bovine calbindin D9k determined by X-ray crystallography [Szebenyi, D. M. E., & Moffat, K. (1986) J. Biol. Chem. 261, 8761-8776]. A model structure built from the bovine calbindin D9k crystal structure shows several deviations larger than 2 A from the experimental distance constraints for the porcine protein. These structural differences are efficiently removed by subjecting the model structure to the experimental distance and dihedral angle constraints in a restrained molecular dynamics protocol, thereby generating a model that is very similar to the refined distance geometry derived structures. The N-terminal residues of the intact protein that are absent in the minor A form appear to be highly flexible and do not influence the structure of other regions of the protein. This result is important because it validates the conclusions drawn from the wide range of studies that have been carried out on minor A forms rather than the intact calbindin D9k.  相似文献   

5.
6.
The three-dimensional solution structure of ascidian trypsin inhibitor (ATI), a 55 amino acid residue protein with four disulfide bridges, was determined by means of two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. The resulting structure of ATI was characterized by an alpha-helical conformation in residues 35-42 and a three-stranded antiparallel beta-sheet in residues 22-26, 29-32, and 48-50. The presence of an alpha-helical conformation was predicted from the consensus sequences of the cystine-stabilized alpha-helical (CSH) motif, which is characterized by an alpha-helix structure in the Cys-X(1)-X(2)-X(3)-Cys portion (corresponding to residues 37-41), linking to the Cys-X-Cys portion (corresponding to residues 12-14) folded in an extended structure. The secondary structure and the overall folding of the main chain of ATI were very similar to those of the Kazal-type inhibitors, such as Japanese quail ovomucoid third domain (OMJPQ3) and leech-derived tryptase inhibitor form C (LDTI-C), although ATI does not show extensive sequence homology to these inhibitors except for a few amino acid residues and six of eight half-cystines. On the basis of these findings, we realign the amino acid sequences of representative Kazal-type inhibitors including ATI and discuss the unique structure of ATI with four disulfide bridges.  相似文献   

7.
The 1:1 complex of the mutant Antp(C39----S) homeodomain with a 14 bp DNA fragment corresponding to the BS2 binding site was studied by nuclear magnetic resonance (NMR) spectroscopy in aqueous solution. The complex has a molecular weight of 17,800 and its lifetime is long compared with the NMR chemical shift time scale. Investigations of the three-dimensional structure were based on the use of the fully 15N-labelled protein, two-dimensional homonuclear proton NOESY with 15N(omega 2) half-filter, and heteronuclear three-dimensional NMR experiments. Based on nearly complete sequence-specific resonance assignments, both the protein and the DNA were found to have similar conformations in the free form and in the complex. A sufficient number of intermolecular 1H-1H Overhauser effects (NOE) could be identified to enable a unique docking of the protein on the DNA, which was achieved with the use of an ellipsoid algorithm. In the complex there are intermolecular NOEs between the elongated second helix in the helix-turn-helix motif of the homeodomain and the major groove of the DNA. Additional NOE contacts with the DNA involve the polypeptide loop immediately preceding the helix-turn-helix segment, and Arg5. This latter contact is of special interest, both because Arg5 reaches into the minor groove and because in the free Antp(C39----S) homeodomain no defined spatial structure could be found for the apparently flexible N-terminal segment comprising residues 0-6.  相似文献   

8.
Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron density of the C-peptide. Here we show that SSB forms a monomer at pH 3.4, which is suitable for studies by high-resolution nuclear magnetic resonance (NMR) spectroscopy. The OB-domain retains its 3D structure in the monomer, and the C-peptide is shown by nuclear Overhauser effects and lanthanide-induced pseudocontact shifts to bind to the OB-domain at a site that harbors ssDNA in the crystal structure of the SSB–ssDNA complex. 15N relaxation data demonstrate high flexibility of the polypeptide segment linking the C-peptide to the OB-domain and somewhat increased flexibility of the C-peptide compared with the OB-domain, suggesting that the C-peptide either retains high mobility in the bound state or is in a fast equilibrium with an unbound state.  相似文献   

9.
The three-dimensional structure of an alpha-amylase inhibitor, HAIM, composed of 78 amino acids, was analyzed by two-dimensional NMR techniques. Sequence-specific assignments were made for the amino acid residues from Ile-6 to Cys-72. Distance geometry analysis of the interresidue NOEs revealed that the HAIM molecule consists of two beta-sheets, as is the case in a homologous alpha-amylase inhibitor, Tendamistat, though one of its beta-strands is much shorter than that of Tendamistat. The combination of molecular modeling from Tendamistat and distance geometry analysis was confirmed to be useful for our purpose.  相似文献   

10.
The three-dimensional solution structure of the HIV-1 protease homodimer, MW 22.2 kDa, complexed to a potent, cyclic urea-based inhibitor, DMP323, is reported. This is the first solution structure of an HIV protease/inhibitor complex that has been elucidated. Multidimensional heteronuclear NMR spectra were used to assemble more than 4,200 distance and angle constraints. Using the constraints, together with a hybrid distance geometry/simulated annealing protocol, an ensemble of 28 NMR structures was calculated having no distance or angle violations greater than 0.3 A or 5 degrees, respectively. Neglecting residues in disordered loops, the RMS deviation (RMSD) for backbone atoms in the family of structures was 0.60 A relative to the average structure. The individual NMR structures had excellent covalent geometry and stereochemistry, as did the restrained minimized average structure. The latter structure is similar to the 1.8-A X-ray structure of the protease/DMP323 complex (Chang CH et al., 1995, Protein Science, submitted); the pairwise backbone RMSD calculated for the two structures is 1.22 A. As expected, the mismatch between the structures is greatest in the loops that are disordered and/or flexible. The flexibility of residues 37-42 and 50-51 may be important in facilitating substrate binding and product release, because these residues make up the respective hinges and tips of the protease flaps. Flexibility of residues 4-8 may play a role in protease regulation by facilitating autolysis.  相似文献   

11.
Proton decoupled 15N NMR spectroscopy is shown to be a useful tool for probin the dynamic structure of the bacterial cell envelope. The proton decoupled 15N NMR spectra of Escherichia coli whole cells, cell envelopes and outer membranes were obtained and displayed resonances originating from protein side-chain groups, phosphatidylethanolamine, and peptidoglycan. Removal of phospholipids from the cell envelope resulted in a decrease in the motional freedom of peptidoglycan and cell envelope proteins. The mobility of the protein Arg side-chain groups is increased in the absence of peptidoglycan. These data provide insights into the effect of supramolecular organization on the dynamic structure of the E. coli cell envelope.  相似文献   

12.
546 NOESY cross-peak volumes were measured in the two-dimensional NOESY spectrum of proteolytic fragment 163-231 of bacterioopsin in organic solution. These data and 42 detected hydrogen bonds were applied for determining the peptide spatial structure. The fold of the polypeptide chain was determined by local structure analysis, a distance geometry approach and systematic search for energetically allowed side-chain rotamers which are consistent with experimental NOESY cross-peak volumes. The effective rotational correlation time of 6 ns for the molecule was evaluated from optimization of the local structure to meet NOE data and from the dependence on mixing time of the NiH/Ci alpha H cross-peak volumes of the residues in alpha-helical conformation. The resulting structure has two well defined alpha-helical regions, 168-191 and 198-227, with root-mean-square deviation 44 pm and 69 pm, respectively, between the backbone atoms in 14 final energy refined conformations. The alpha-helices correspond to transmembrane segments F and G of bacteriorhodopsin. The segment F contains proline 186, which introduces a kink of about 25 degrees with a disruption of the hydrogen bond with the NH group of the following residue. The segments are connected by a flexible loop region 192-197. Torsion angles chi 1 are unequivocally defined for 62% of side chains in the alpha-helices but half of them differ from electron cryo-microscopy (ECM) model of bacteriorhodopsin, apparently because of the low resolution of ECM. Nevertheless, the F and G segments can be packed as in the ECM model and with side-chain conformations consistent with all NMR data in solution.  相似文献   

13.
The solution conformation of the ribonuclease barnase has been determined by using 1H nuclear magnetic resonance (NMR) spectroscopy. The 20 structures were calculated by using 853 interproton distance restraints obtained from analyses of two-dimensional nuclear Overhauser spectra, 72 phi and 53 chi 1 torsion angle restraints, and 17 hydrogen-bond distance restraints. The calculated structures contain two alpha-helices (residues 6-18 and 26-34) and a five-stranded antiparallel beta-sheet (residues 50-55, 70-75, 85-91, 94-101, and 105-108). The core of the protein is formed by the packing of one of the alpha-helices (residues 6-18) onto the beta-sheet. The average RMS deviation between the calculated structures and the mean structure is 1.11 A for the backbone atoms and 1.75 A for all atoms. The protein is least well-defined in the N-terminal region and in three large loops. When these regions are excluded, the average RMS deviation between the calculated structures and the mean structure for residues 5-34, 50-56, 71-76, 85-109 is 0.62 A for the backbone atoms and 1.0 A for all atoms. The NMR-derived structure has been compared with the crystal structure of barnase [Mauguen et al. (1982) Nature (London) 297, 162-164].  相似文献   

14.
15.
The solution conformation of uniformly labeled 15N human thioredoxin has been studied by two-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Assignments of the 15N resonances of the protein are obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC-correlated (COSY), and relayed HMQC-nuclear Overhauser (NOESY) spectroscopy. Values of the 3JHN alpha splittings for 87 of the 105 residues of thioredoxin are extracted from a variant of the HMQC-COSY experiment, known as HMQC-J, and analyzed to give accurate 3JHN alpha coupling constants. In addition, long-range C alpha H(i)-15N(i + 1) scaler connectivities are identified by heteronuclear multiple bond correlation (HMBC) spectroscopy. The presence of these three-bond scaler connectivities in predominantly alpha-helical regions correlates well with the secondary structure determined previously from a qualitative analysis of homonuclear nuclear Overhauser data [Forman-Kay, J. D., Clore, G. M., Driscoll, P.C., Wingfield, P. T., Richards, F. M., & Gronenborn, A. M. (1989) Biochemistry 28, 7088-7097], suggesting that this technique may provide additional information for secondary structure determination a priori. The accuracy with which 3JHN alpha coupling constants can be obtained from the HMQC-J experiment permits a more precise delineation of the beginnings and ends of secondary structural elements of human thioredoxin and of irregularities in these elements.  相似文献   

16.
Fermenting anaerobic cultures of Escherichia coli were observed by the nonintrusive technique of in vivo, whole-culture nuclear magnetic resonance. Fermentation balances were calculated for hexoses, pentoses, sugar alcohols, and sugar acids. Substrates more reduced than glucose yielded more of the highly reduced fermentation product ethanol, whereas more-oxidized substrates produced more of the less-reduced fermentation product acetate. These relationships were made more obvious by the introduction of ldhA mutations, which abolished lactate production, and delta frd mutations, which eliminated succinate. When grown anaerobically on sugar alcohols such as sorbitol, E. coli produced ethanol in excess of the amount calculated by the standard fermentation pathways. Reducing equivalents must be recycled from formate to account for this excess of ethanol. In mutants deficient in hydrogenase (hydB), ethanol production from sorbitol was greatly decreased, implying that hydrogen gas released from formate by the formate-hydrogen lyase system may be partially recycled, in the wild type, to increase the yield of the highly reduced fermentation product ethanol.  相似文献   

17.
H Haruyama  K Wüthrich 《Biochemistry》1989,28(10):4301-4312
The three-dimensional structure of recombinant desulfatohirudin in aqueous solution was determined by 1H nuclear magnetic resonance at 600 MHz and distance geometry calculations with the program DISMAN. The input for the structure calculations was prepared on the basis of complete sequence-specific resonance assignments at pH 4.5 and 22 degrees C and consisted of 425 distance constraints from nuclear Overhauser enhancements and 159 supplementary constraints from spin-spin coupling constants and from the identification of intramolecular hydrogen bonds. Residues 3-30 and 37-48 form a molecular core with two antiparallel beta-sheets and several well-defined turns. The three disulfide bonds 6-14, 16-28, and 22-39 were identified by NMR. In contrast to this well-defined molecular core, with an average root mean square distance for the polypeptide backbone of 0.8 A for a group of nine DISMAN solutions, no preferred conformation was found for the C-terminal segment 49-65, and a loop consisting of residues 31-36 is not uniquely constrained by the NMR data either. These structural properties of recombinant desulfatohirudin coincide closely with the previously described solution conformation of natural hirudin, but the presence of localized differences is indicated by chemical shift differences for residues Asp 5, Ser 9, Leu 15, Asp 53, Gly 54, and Asp 55.  相似文献   

18.
The primary structure of the oligosaccharide moiety of a glycosphingolipid can be elucidated by employing high-field proton nuclear magnetic resonance (NMR) spectroscopy. Information with respect to the composition and configuration of its sugar residues, and the sequence and linkage sites of the oligosaccharide chain can be obtained by employing a variety of one- and two-dimensional techniques. The latter include both scalar and dipolar correlated two-dimensional NMR spectroscopy. These techniques are also useful in establishing the solution conformation (secondary structure) of the oligosaccharide moiety. Examples in utilizing these techniques in elucidating the primary and secondary structures of glycolipids are presented.  相似文献   

19.
A subgene encoding the 87 C-terminal amino acids of the biotinyl carboxy carrier protein (BCCP) from the acetyl CoA carboxylase of Escherichia coli was overexpressed and the apoprotein biotinylated in vitro. The structures of both the apo and holo forms of the biotinyl domain were determined by means of multidimensional NMR spectroscopy. That of the holo domain was well-defined, except for the 10 N-terminal residues, which form part of the flexible linker between the biotinyl and subunit-binding domains of BCCP. In agreement with X-ray crystallographic studies [Athappilly, F. K., and Hendrickson, W. A. (1995) Structure 3, 1407-1419], the structure comprises a flattened beta-barrel composed of two four-stranded beta-sheets with a 2-fold axis of quasi-symmetry and the biotinyl-lysine residue displayed in an exposed beta-turn on the side of the protein opposite from the N- and C-terminal residues. The biotin group is immobilized on the protein surface, with the ureido ring held down by interactions with a protruding polypeptide "thumb" formed by residues 94-101. However, at the site of carboxylation, no evidence could be found in solution for the predicted hydrogen bond between the main chain O of Thr94 and the ureido HN1'. The structure of the apo domain is essentially identical, although the packing of side chains is more favorable in the holo domain, and this may be reflected in differences in the dynamics of the two forms. The thumb region appears to be lacking in almost all other biotinyl domain sequences, and it may be that the immobilization of the biotinyl-lysine residue in the biotinyl domain of BCCP is an unusual requirement, needed for the catalytic reaction of acetyl CoA carboxylase.  相似文献   

20.
The solution conformation of acyl carrier protein from Escherichia coli (77 residues) has been determined on the basis of 423 interproton-distance restraints and 32 hydrogen-bonding restraints derived from NMR measurements. A total of nine structures were computed using a hybrid approach combining metric matrix distance geometry and dynamic simulated annealing. The polypeptide fold is well defined with an average backbone atomic root-mean-square difference of 0.20 +/- 0.03 nm between the final nine converged structures and the mean structure obtained by averaging their coordinates. The principal structural motif is composed of three helices: 1 (residues 3-12), 2 (residues 37-47) and 4 (residues 65-75) which line a hydrophobic cavity. Helices 2 and 4 are approximately parallel to each other and anti-parallel at an angle of approximately equal to 150 degrees to helix 1. The smaller helix 3 (residues 56-63) is at an angle of approximately equal to 100 degrees to helix 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号