共查询到20条相似文献,搜索用时 0 毫秒
1.
During development of the cerebellum, sonic hedgehog (Shh) is directly responsible for the proliferation of granule cell precursors in the external germinal layer. We have looked for signals able to regulate a switch from the Shh-mediated proliferative response to one that directs differentiation of granule neurones. Bone morphogenetic proteins (BMPs) are expressed in distinct neuronal populations within the developing cerebellar cortex. Bmp2 and Bmp4 are expressed in the proliferating precursors and subsequently in differentiated granule neurones of the internal granular layer, whereas Bmp7 is expressed by Purkinje neurones. In primary cultures, Bmp2 and Bmp4, but not Bmp7, are able to prevent Shh-induced proliferation, thereby allowing granule neuron differentiation. Furthermore, Bmp2 treatment downregulates components of the Shh pathway in proliferating granule cell precursors. Smad proteins, the only known BMP receptor substrates capable of transducing the signal, are also differentially expressed in the developing cerebellum: Smad1 in the external germinal layer and Smad5 in newly differentiated granule neurones. Among them, only Smad5 is phosphorylated in vivo and in primary cultures treated with Bmp2, and overexpression of Smad5 is sufficient to induce granule cell differentiation in the presence of Shh. We propose a model in which Bmp2-mediated Smad5 signalling suppresses the proliferative response to Shh by downregulation of the pathway, and allows granule cell precursor to enter their differentiation programme. 相似文献
2.
《遗传学报》2021,48(7):606-617
The tumor suppressor p53 transactivates the expression of multiple genes to exert its multifaceted functions and ultimately maintains genome stability. Thus, cancer cells develop various mechanisms to diminish p53 expression and bypass the cell cycle checkpoint. In this study, we identified the gene encoding RNAbinding protein cytoplasmic polyadenylation element-binding protein 2(CPEB2) as a p53 target. In turn,CPEB2 decreases p53 messenger RNA stability and translation to fine-tune p53 level. Specifically, we showed that CPEB2 binds the cytoplasmic polyadenylation elements in the p53 30-untranslated region, and the RNA recognition motif and zinc finger(ZF) domains of CPEB2 are required for this binding. Furthermore,we found that CPEB2 was upregulated in renal cancer tissues and promotes the renal cancer cell proliferation and migration. The oncogenic effect of CPEB2 is partially dependent on negative feedback regulation of p53. Overall, we identify a novel regulatory feedback loop between p53 and CPEB2 and demonstrate that CPEB2 promotes tumor progression by inactivating p53, suggesting that CPEB2 is a potential therapeutic target in human renal cancer. 相似文献
3.
Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block 总被引:12,自引:0,他引:12
Pashmforoush M Lu JT Chen H Amand TS Kondo R Pradervand S Evans SM Clark B Feramisco JR Giles W Ho SY Benson DW Silberbach M Shou W Chien KR 《Cell》2004,117(3):373-386
4.
5.
6.
7.
8.
9.
Developmental expression of the Xenopus Nkx2-1 and Nkx2-4 genes 总被引:1,自引:0,他引:1
10.
11.
The mouse Nkx5-1 and Nkx5-2 genes are related to NK genes in Drosophila and encode proteins with very similar homeodomains. In higher vertebrates Nkx5 genes are specifically expressed in the inner ear. Inactivation of the mouse Nkx5-1 gene by homologous recombination revealed a critical role for the formation of vestibular inner ear structures. Here, we investigated biochemical properties of the proteins encoded by the Nkx5 genes. A similar consensus binding sequence was isolated for both Nkx5 proteins using binding site selection. This sequence is related to target sequences previously identified for other Nkx proteins and contains the conserved homeodomain binding core TAAT. An additional, novel and unrelated high affinity binding sequence could be identified for the Nkx5-2 protein. 相似文献
12.
Zhou B von Gise A Ma Q Rivera-Feliciano J Pu WT 《Biochemical and biophysical research communications》2008,375(3):450-453
Correct delineation of the hierarchy of cardiac progenitors is a key step to understanding heart development, and will pave the way for future use of cardiac progenitors in the treatment of heart disease. Multipotent Nkx2-5 and Isl1 cardiac progenitors contribute to cardiomyocyte, smooth muscle, and endothelial lineages, which constitute the major lineages of the heart. Recently, progenitors located within the proepicardium and epicardium were reported to differentiate into cardiomyocytes, as well as smooth muscle and endothelial cells. However, the relationship of these proepicardial progenitors to the previously described Nkx2-5 and Isl1 cardiac progenitors is incompletely understood. To address this question, we performed in vivo Cre-loxP-based lineage tracing. Both Nkx2-5- and Isl1-expressing progenitors contributed to the proepicardium and expressed Wt1 and Tbx18, markers of proepicardial progenitor cells. Interestingly, Nkx2-5 knockout resulted in abnormal proepicardial development and decreased expression of Wt1, suggesting a functional role for Nkx2-5 in proepicardium formation. Taken together, these results suggest that Nkx2-5 and/or Isl1 cardiac progenitors contribute to proepicardium during heart development. 相似文献
13.
14.
15.
Brabletz S Bajdak K Meidhof S Burk U Niedermann G Firat E Wellner U Dimmler A Faller G Schubert J Brabletz T 《The EMBO journal》2011,30(4):770-782
Notch signalling is important for development and tissue homeostasis and activated in many human cancers. Nevertheless, mutations in Notch pathway components are rare in solid tumours. ZEB1 is an activator of an epithelial-mesenchymal transition (EMT) and has crucial roles in tumour progression towards metastasis. ZEB1 and miR-200 family members repress expression of each other in a reciprocal feedback loop. Since miR-200 members target stem cell factors, ZEB1 indirectly induces stemness maintenance and associated drug resistance. Here, we link ZEB1 and its cancer promoting properties to Notch activation. We show that miR-200 members target Notch pathway components, such as Jagged1 (Jag1) and the mastermind-like coactivators Maml2 and Maml3, thereby mediating enhanced Notch activation by ZEB1. We further detected a coordinated upregulation of Jag1 and ZEB1, associated with reduced miR-200 expression in two aggressive types of human cancer, pancreatic adenocarcinoma and basal type of breast cancer. These findings explain increased Notch signalling in some types of cancers, where mutations in Notch pathway genes are rare. Moreover, they indicate an additional way how ZEB1 exerts its tumour progressing functions. 相似文献
16.
17.
18.
19.
Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart 总被引:9,自引:0,他引:9
Toko H Zhu W Takimoto E Shiojima I Hiroi Y Zou Y Oka T Akazawa H Mizukami M Sakamoto M Terasaki F Kitaura Y Takano H Nagai T Nagai R Komuro I 《The Journal of biological chemistry》2002,277(27):24735-24743
Csx/Nkx2-5, which is essential for cardiac development of the embryo, is abundantly expressed in the adult heart. We here examined the role of Csx/Nkx2-5 in the adult heart using two kinds of transgenic mice. Transgenic mice that overexpress a dominant negative mutant of Csx/Nkx2-5 (DN-TG mice) showed degeneration of cardiac myocytes and impairment of cardiac function. Doxorubicin induced more marked cardiac dysfunction in DN-TG mice and less in transgenic mice that overexpress wild type Csx/Nkx2-5 (WT-TG mice) compared with non-transgenic mice. Doxorubicin induced cardiomyocyte apoptosis, and the number of apoptotic cardiomyocytes was high in the order of DN-TG mice, non-transgenic mice, and WT-TG mice. Overexpression of the dominant negative mutant of Csx/Nkx2-5 induced apoptosis in cultured cardiomyocytes, while expression of wild type Csx/Nkx2-5 protected cardiomyocytes from doxorubicin-induced apoptotic death. These results suggest that Csx/Nkx2-5 plays a critical role in maintaining highly differentiated cardiac phenotype and in protecting the heart from stresses including doxorubicin. 相似文献
20.
Wu‐Xia Qiu Xiao‐Li Ma Xiao Lin Fan Zhao Di‐Jie Li Zhi‐Hao Chen Ke‐Wen Zhang Ru Zhang Pai Wang Yun‐Yun Xiao Zhi‐Ping Miao Kai Dang Xiao‐Yang Wu Ai‐Rong Qian 《Journal of cellular and molecular medicine》2020,24(1):317-327
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease. 相似文献