首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In high density cultures of mouse fetal lung cells, so-called "mass cultures", development of organoid structures, formation of a basement membrane (BM), and differentiation of pneumocytes type II occur accompanied by synthesis and secretion of lamellar bodies. The relationship between the formation of a BM, on the one hand, and morphogenesis as well as differentiation of pneumocytes type II, on the other hand, has been investigated by use of antibodies against BM components in the lung mass culture. It is shown here that anti-laminin antibodies prevented BM formation, but morphogenesis and pneumocyte differentiation occurred as in untreated cultures. Short-term treatment with the antibody revealed that the BM is formed only during the first 2 to 3 days in vitro. Already formed BM could not be removed by anti-laminin. Anti-collagen type IV antibodies showed no effect in the lung mass culture except for a stronger staining of the BM. Anti-BM-1 antibodies caused no changes in morphogenesis, cell differentiation and BM formation either, but the mesenchymal intercellular space exhibited a dark staining, which is probably due to antigen-antibody complexes. The results obtained with anti-laminin antibodies indicate that a BM is not necessary for lung cell differentiation in vitro.  相似文献   

2.
Epithelial differentiation during lung development appears to be influenced by mesenchyme-derived instructions coupled with hormonal regulations. The basal lamina which is associated with progenitor and differentiating epithelia during mouse embryogenesis (Theiler-stages 16-28) was examined by transmission electron microscopy and indirect-immunofluorescence microscopy. During the embryonic phase of lung development, progenitor epithelia for the pulmonary acinus projected microvilli or cytoplasmic "feet" through the basal lamina, which resulted in discontinuities and a close approximation of the adjacent mesenchymal-cell processes. These changes were also associated with the transitory polarization of mesenchymal cells perpendicular to the plane of the basal lamina, which resulted in a sheet of cuboidal mesenchymal cells adjacent to the developing acinar-tubule epithelium. During the embryonic phase of lung development, these specific interstitial or mesenchymal cells stained for heparan-sulfate proteoglycans; no other cell types were immunostained. By Theiler-stage 25, the acinar-tubule epithelia had differentiated into type-II pneumonocytes which contained lamellar bodies and significant amounts of glycogen. Fibronectin, laminin, and heparan-sulfate proteoglycan were localized in the basement membranes during the embryonic, canalicular, and terminal sac phases of lung morphogenesis. A diffuse localization of fibronectin of the interstitial cell surfaces was observed. These observations indicate that major changes in the structure and composition of basal lamina occur during the embryonic and fetal phases of pulmonary-acinus epithelial-cell differentiation and the production of pulmonary surfactant. The major changes in the basal lamina may be partly mediated by mesenchyme-derived instructions for type-II epithelial-cell differentiation.  相似文献   

3.
Summary In the present study we describe a new method to cultivate human tumors, which allows organoid differentiation under in vitro conditions. Diverse tumors of different origin and various histopathology which had been heterotransplanted to athymic mice were dissociated into single cells and seeded at high cell density onto a membrane filter consisting of cellulose nitrate at the gas-medium interface. Within a few days, the tumor cells reorganized and differentiated into organoid structures which exhibited the typical histological characteristics of the original tissues. Due to the formation of organoid aggregates, which was also previously seen with normal fetal cells, this type of culture has been described as organoid culture. In the case of adenocarcinomas of the lung and the colon including the rectum, glandular structures with central lumina, adjacent microvilli, and junctional complexes were formed. Numerous specific intercellular contacts such as desmosomes and tight junctions occurred as well as interdigitations of adjacent cell membranes. In a tumor of the rectum, a typical brush border differentiated at the surface of the reorganized tumor-tissue aggregate. Epidermoid carcinomas of the head and neck developed structures resembling the spinous layer of the epidermis, exhibiting numerous desmosomes and intracytoplasmic bundles of tonofilaments radiating into the desmosomes. Most tumors produced a fragmentary monolayered or multilayered basal lamina of similar morphological appearance as under in vivo conditions. These results illustrate the organoid reorganization and differentiation of human tumor cells under the experimentally rather simple conditions of the organoid culture systems and clearly demonstrate that this in vitro system comes close to the in vivo situation as far as certain differentiation phenomena are concerned.  相似文献   

4.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

5.
The morphogenetic role of the acid mucopolysaccharide (glycosaminoglycan) at the epithelial surface of mouse embryo submandibular glands has been studied by comparing the in vitro morphogenesis of epithelia from which the mucopolysaccharide was removed with that of those that retained the mucopolysaccharide. Epithelia isolated free of mesenchyme by procedures which retain the bulk of surface mucopolysaccharide maintain their lobular shape and undergo uninterrupted branching morphogenesis in culture in direct combination with fresh mesenchyme. Under identical culture conditions, epithelia from which surface mucopolysaccharide was removed lose their lobules and become spherical masses of tissue. During continued culture, the spherical epithelia produce outgrowths from which branching morphogenesis resumes. The morphogenetically active mucopolysaccharide is localized within the basal lamina of the epithelial basement membrane and appears to be bound to protein. During culture in combination with mesenchyme, epithelia undergoing uninterrupted morphogenesis show maximal accumulation of newly synthesized surface mucopolysaccharide at the distal ends of the lobules, the sites of incipient branching. In contrast, the material accumulates nearly equivalently over the surface of the spherical epithelia, with the exception that there is greater accumulation of the material at the surfaces of the budding outgrowths, the sites where morphogenesis will resume. Rapidly proliferating cells are localized within the lobules of epithelia undergoing uninterrupted morphogenesis, but are distributed uniformly in the cortex of the spherical epithelia, except for the outgrowths which show a greater localization of proliferating cells. It is concluded that normal salivary epithelial morphology and branching morphegenesis require the presence of acid mucopolysaccharide-protein within the epithelial basal lamina.  相似文献   

6.
Insoluble "biomatrix" of mesenchyme is a stimulator of mammary cell differentiation in vitro , but its effect in the morphogenesis is unknown. Fetal salivary mesenchyme induces intense local duct formation when implanted into adult mammary gland. We have therefore tested whether biomatrix prepared from fetal salivary mesenchyme retains this abillity to stimulate duct formation in vivo . Salivary mesenchyme isolated from mouse fetuses at 13.5–14.0 days of gestation, extracted sequentially with water and with 1 M NaCl, then digested with DNAse and RNAse was implanted into mammary glands of female mice and left for periods of 1–35 days. In approximately 40% of recipients, the local epithelium either formed cyst like structures, or else "spikes" of mammary epithelium penetrated the matrix forming a simplified ductwork inside it. Similar responses were elicited by salivary mesenchyme killed by freezing and also by biomatrix prepared from fetal mammary fat pad precursor tissue, mesenchyme of fetal lung, and fetal heart, liver, and brain. However when mesenchyme was either fixed with glutaraldehyde or sonicated and embedded in polymer blocks before implantation, no epithelial response was noted. These observations suggest that the biomatrix provides a passive scaffolding that contributes to morphogenesis of mammary ducts, is insufficient to support normal morphogenesis.  相似文献   

7.
The role of the basal lamina in maintaining the normal morphology of mouse embryo submandibular epithelia was assessed by examining its production as well as the cellular and organ culture changes associated with its removal and replacement. The lamina was removed from epithelia isolated free of mesenchyme by brief treatment with testicular hyaluronidase in the absence of calcium. The treatment causes rounding- up of the cells, loss of cellular cohesion, appearance of microvilli, and changes in the organization of cytoskeletal structures. The lamina is not removed and the cellular alterations do not occur in the absence of hyaluronidase in calcium-free medium or when both enzyme and calcium are present, possibly because digestion of chondroitin sulfate, a component of the lamina, is inhibited by calcium. Within 2 h after treatment, in the absence of mesenchyme or biological substrata, the epithelia deposits a new lamina, which is identical by several criteria to the preexisting lamina, and reverses the cellular alterations. Epithelia treated with hyaluronidase lose lobular morphology during culture with mesenchyme. Delaying culture with mesenchyme, to allow restoration of the lamina and of normal cellular architecture, prevents the loss of lobular morphology. The results indicate that the basal lamina imposes morphologic stability on the epithelium, while the mesenchyme apparently affects processes involved in changes in morphology, possibly by selective degradation of the basal lamina.  相似文献   

8.
9.
Early development of the hind limb of Xenopus (stages 44–48) has been analyzed at the level of ultrastructure with emphasis on differentiation of extracellular matrix components and intercellular contacts. By stages 44–45, mesenchyme is separated from prospective bud epithelium by numerous adepidermal granules in a subepithelial compartment (the lamina lucida), a continuous basal lamina and several layers of collagen (the basement lamella). Tricomplex stabilization of amphoteric phospholipid demonstrates that each adepidermal granule consists of several membranelike layers (electron-lucent band 25–30 Å; electron-dense band 20–40 Å), which are usually parallel to the basal surface of adjacent epithelial cells. Collagen fibrils are interconnected by filaments (35 Å in diameter) which stain with ruthenium red. Epithelial cells possess junctional complexes at their superficial borders, numerous desmosomes at apposing cell membranes and hemidesmosomes at their basal surface. Mesenchymal cells predominantly exhibit close contacts (100–150 Å separation) with few focal tight junctions at various areas of their surface. By stages 47–48, adepidermal granules are absent beneath bud epithelium and layers of collagen in the basement lamella lose filamentous cross-linking elements. Filopodia of mesenchymal cells penetrate the disorganized matrix and abut the basal lamina. Hemidesmosomes disappear at the basal surface of the epidermis and mesenchymal cells immediately subjacent to epithelium exhibit focal tight junctions and gap junctions at their lateral borders. These structural changes may be instrumental in the epitheliomesenchymal interactions of early limb development. Degradation of oriented collagenous lamellae permits direct association of mesenchymal cell surfaces (filopodia) with surface-associated products of epithelial cells (organized into the basal lamina). Development of structural pathways for intercellular ion and metabolite transport in mesenchyme may coordinate events specific to limb morphogenesis.  相似文献   

10.
LS174T human colon cancer cells formed glandular structures with microvilli, tight junctions, desmosomes and basal laminae arranged in order as in normal intestinal epithelial cells when combined with fetal rat mesenchymes in organ culture. When cultured with type I collagen gel, they also formed glandular structures, but less efficiently than with the mesenchyme. In collagen gel-induced glandular structures, microvilli, tight junctions and desmosomes were arranged in order as in mesenchyme-induced ones, but basal laminae were never observed in contrast with mesenchyme-induced ones. These results indicate that basal lamina formation is not necessary for the glandular structure formation and that mesenchymes promote glandular structure formation of LS174T cells by supplying components necessary for basal lamina formation.  相似文献   

11.
During embryonic and neonatal mouse incisor tooth morphogenesis, direct epithelial-mesenchymal cell contacts were observed by electron microscopy. These direct contacts were evident along the epithelial-mesenchymal interface in the differentiation zone in which inner enamel epithelium was as yet a dividing cell population which had not as yet synthesized and secreted the enamel organic matrix. This region of cell differentiation was also characterized by the appearance of cell processes which extended from the epithelia through the basal lamina. Following the appearance of epithelial cell processes penetrating through the basal lamina, ectomesenchymal cell processes extended across the extracellular matrix and penetrated through the basal lamina and resulted in the formation of contact zones. Following degradation of the basal lamina, the mesenchymal cell processes penetrated into clefts within the preameloblast cells and formed cell contacts. By a combination of tannic acid and uranium acetate staining we observed that the tannic acid stain penetrated through intercellular spaces formed between the apposing mesenchymal and epithelial plasma membrane surfaces. We speculate that direct heterotypic cell contacts, which occur prior to the cessation of preameloblast cell division and precede the secretion of enamel proteins, may be instructive in the induction of enamel protein biosynthesis.  相似文献   

12.
Summary Methods are described for isolation and culture of primary mesenchyme cells from echinoid embryos. Ninety-five percentpure primary mesenchyme cells were isolated from early gastrulae ofStrongylocentrotus purpuratus, exploiting the biological segregation of these cells within the blastocoel. When cultured, more than 90% of the isolated cells reached the differentiated state, spicule formation, in synchrony with in vivo controls. Isolated primary mesenchyme cells were cultured with and without various cellular and acellular components of normal embryos in order to study the potential involvement of these components in the morphogenesis of the primary mesenchyme. Our data indicate that: 1. primary mesenchyme cells lack the ability to form the annular pattern of the primary mesenchymal ring autonomously; 2. they autonomously produce spicules of a characteristic morphology that differs from that of embryonic spicules; 3. morphogenesis of the primary mesenchyme is not affected by association with embryonic basal lamina, blastocoel matrix, or loosely aggregated epithelial cells, or by close confinement of each set of primary mesenchyme cells within the blastocoelar space; and 4. reaggregated, tightly associated epithelial cells can promote normal primary mesenchyme ring formation, and modify the primary mesenchyme-intrinsic spicule pattern to produce more normal spicule forms.  相似文献   

13.
We investigated whether turnover of basal lamina glycosaminoglycan (GAG), an active process during epithelial morphogenesis, involves the mesenchyme. Fixed, prelabeled, isolated mouse embryo submandibular epithelia were prepared retaining radioactive surface components, as determined by autoradiographic and enzymatic studies, and a basal lamina, as assessed by electron microscopy. Recombination of mouse embryo submandibular mesenchyme with these epithelia stimulates the release of epithelial radioactivity when the labeled precursor is glucosamine or glucose but not when it is amino acid. The release is linear with time during 150 min incubation. Augmented release of epithelial label requires living mesenchyme which must be close proximity with the epithelia. Although heterologous mesenchymes, including lung, trachea, and jaw, stimulate the release of submandibular epithelial label, epithelial tissues do not. The label released by intact submandibular mesenchyme from prelabeled epithelia is in GAG and in two unique fractions: heterogeneous materials of tetrasaccharide or smaller size and N-acetylglucosamine. Enzymatic treatment of the heterogeneous materials revealed the presence of glycosaminoglycan-derived oligosaccharides. These unique products were not obtained by incubating prelabeled epithelia with a mesenchymal cell extract, suggesting that intact mesenchymal cells are required. N-Acetylglucosamine was also released when mesenchyme was recombined with living prelabeled epithelia which contained labeled basal laminar GAG. Our results establish that submandibular epithelial basal lamina GAGs are degraded by submandibular mesenchyme. We propose that one mechanism of epithelial-mesenchymal interaction is the degradation of epithelial basal laminar GAG by mesenchyme.  相似文献   

14.
15.
We have recently described a primary culture system which allows for extensive proliferation and functional differentiation of immature mammary epithelial cells. Herein, these findings are extended to demonstrate that a distinct pattern of ductal and alveolar morphogenesis can be induced within the mammary organoids isolated from virgin female rats and cultured within an Engelbreth-Holm-Swarm sarcoma-derived reconstituted basement membrane under defined serum-free conditions. The lobular and multilobular organoids that emerged resemble the alveoli of the mammary gland in gross form, multicellular architecture, and cytologic and functional differentiation, while the ductal organoids expressed characteristics typical of mammary gland ducts in vivo. The epithelial cells within the alveolar- and duct-like organoids displayed the capability of secreting two morphologically distinct milk products, casein and lipid, into the luminal compartment. The expression of histiotypic morphogenesis and mammary-specific functional differentiation by the cultured mammary organoids proceeded in the absence of a morphologically distinct basal lamina. We illustrate that development highly reminiscent of that which naturally occurs in the mammary gland in vivo can be induced and supported in vitro under defined serum-free conditions. In addition, the methodologies are available to simultaneously monitor mammary organoid morphogenesis, growth, and functional differentiation. This system should serve as a unique model in which the regulation of branching morphogenesis, development, gene expression, and transformation can be examined.  相似文献   

16.
17.
Abstract. The purpose of this investigation was to determine whether lamellar inclusion body (LB) formation and surfactant apoprotein (SP-35) production are directly coordinated by temporal and positional information during development. In the present study we report a comparison between embryonic B10.A mouse lung morphogenesis and cytodifferentiation in vivo with that observed during organ culture in serumless medium. Precursor LB were first detected at embryonic day 12 (E12d), and progressively larger numbers and forms were produced during subsequent differentiation of respiratory alveolar duct epithelium. SP-35 was first detected during the canalicular period (E16.5d). Lung cultures (E12 d) showed pseudoglandular and canalicular periods of morphogenesis, and both ciliated epithelial and type II cell differentiation. Nonciliated cells produced increasing numbers of lamellar inclusion bodies throughout the culture period. SP-35 was detected at 9 days in vitro (d.i.v.). These observations indicate (i) precursor LB formation precedes SP-35 expression and is not dependent on apoprotein synthesis; (ii) E12d lung development in vitro using serumless medium proceeds at a rate equivalent to 0.5 days in vivo through 11 d.i.v.; and (iii) morphogenesis and differentiation occur in the absence of exogenous hormones and growth factors. The cell-cell interactions that play a role in morphogenesis and cell differentiation appear to be intrinsic to the developmental program for embryonic lung development and are likely to be mediated by autocrine and/or paracrine factors.  相似文献   

18.
In this study mouse lung development was examined using an in vitro model system. The culture system permitted examination of a morphogenic process that eventually led to the formation of presumptive alveoli (terminal sacs). The observations included changes in epithelial cell morphology (transition from a columnar to a spindle shape), and evidence for motile activity on the part of primitive airway epithelial cells. The importance of Type IV collagen to the cellular events associated with branching morphogenesis was investigated by immunolocalization. In addition, we assessed the similarity of normal lung development to in vitro development by comparing cultured lungs with equivalent stages of embryonic and fetal mouse lungs. The results show that cultured embryonic lung explants proceed along a morphogenic pathway that parallels normal lung development; that primitive pulmonary epithelial cells engage in motile activity and transiently acquire an extended cell shape both in vitro and in vivo; that, as suggested by others, the pattern of late branching morphogenesis is not dichotomous, but irregular; and that short wisplike fibers of Type IV collagen are present in developing embryonic and fetal lung mesenchyme. Taken together, the results show that early and late lung branching patterns differ significantly, and suggest that later stages of lung branching involve distinct epithelial cell shape transitions. The immunofluorescence data suggest that fibrous Type IV collagen may be the extracellular matrix scaffold within which early epithelial cells accomplish lung branching morphogenesis.  相似文献   

19.
To assess the requirement for specific or possibly non-specific epithelial instructions for mesenchymal cell differentiation, we designed studies to evaluate and compare homotypic with heterotypic tissue recombinations across vertebrate species. These studies further tested the hypothesis that determined dental papilla mesenchyme requires epithelial-derived instructions to differentiate into functional odontoblast cells using a serumless, chemically-defined medium. Theiler stage 25 C57BL/6 or Swiss Webster cap stage mandibular first molar tooth organs or trypsin-dissociated, homotypic epithelial-mesenchymal tissue recombinants resulted in the differentiation of odontoblasts within 3 days. Epithelial differentiation into functional ameloblasts was observed within 7 days. Trypsin-dissociated and isolated mesenchyme did not differentiate into odontoblasts under these experimental conditions. Heterotypic recombinants between quail Hamburger-Hamilton stages 22–26 mandibular epithelium and Theiler stage 25 dental papilla mesenchyme routinely resulted in odontoblast differentiation within 3 days in vitro. Odontoblast differentiation and the production of dentine extracellular matrix continued throughout the 10 days in organ culture. Ultrastructural observations of the interface between quail and mouse tissues indicated the reconstitution of the basal lamina as well as the maintenance of an intact basal lamina during 10 days in vitro. Quail epithelial cells did not differentiate into ameloblasts and no enamel extracellular matrix was observed. These results show that quail mandibular epithelium can provide the required developmental instructions for odontoblast differentiation in the absence of serum or other exogenous humoral factors in a chemically-defined medium. They also suggest the importance of reciprocal epithelial-mesenchymal interactions during epidermal organogenesis.  相似文献   

20.
Early Development of Mouse Anterior Pituitary: Role of Mesenchyme   总被引:1,自引:1,他引:0  
Epithelial-mesenchymal interaction in the early development of the anterior pituitary gland was examined by chronological observations on fetal pituitary epithelium grafted in vivo with and without its own mesenchyme. At 8.5 days of gestation, the RATHKE'S pouch began to evaginate toward the diencephalon. The mesenchymal tissue around the pouch was at first very sparsely scattered, but then condensed, on day 10 becoming visible under a dissecting microscope. When RATHKE'S pouch epithelia from 10- and 12-day fetuses were transplanted alone under the kidney capsule, they proliferated slightly to form cysts, the cells of which differentiated into ACTH-producing cells, but not into prolactin-producing cells. Pituitary morphogenesis did not occur. When these epithelia were recombined with homotypic mesenchyme and transplanted, the epithelia proliferated remarkably on one side of the wall of the pouch, resulting in formation of a pars distalis that contained both ACTH-producing cells and prolactin-producing cells. Heterotypic mesenchyme, such as lung, dermis and mammary gland mesenchyme, could induce 12-day epithelium, but not 10-day epithelium to develop into pars distalis. Thus, fetal pituitary epithelium has the capacity of autodifferentiation into ACTH-producing cells, not into prolactin-producing cells, and requires mesenchymal support for development of the pars distalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号