首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本研究旨在利用理性设计的方法来提高来源于土曲霉Aspergillus terreus的酸性脂肪酶ATL的催化活力。通过同源比对,选择脂肪酶盖子区域和底物结合口袋域中的位点进行定点突变,得到8种ATL的突变脂肪酶。结果发现,盖子区域突变酶ATLLid与底物结合口袋域突变酶ATLV218W的催化活性显著提高。ATLLid和ATLV218W对底物对硝基苯酚月桂酸酯p-nitrophenyl laurate(p-NPL)的催化活性最高,k_(cat)值较ATL分别提高了39.37倍和50.79倍,k_(cat)/K_m值较ATL分别提高了2.85倍和8.48倍。与ATL相比,ATLLid和ATLV218W的热稳定性略有下降,最适p H为5.0,p H 4.0–8.0具有较好的稳定性,说明突变未对ATL的嗜酸耐酸特性产生影响。通过同源建模模拟及分子对接技术分析底物p-NPL与酶分子间的相互作用,解析了ATLLid和ATLV218W催化活性提高的机理。  相似文献   

2.
Bacterial chitosanases share weak amino acid sequence similarities at certain regions of each enzyme. These regions have been assumed to be important for catalytic activities of the enzyme. To verify this assumption, the functional importance of the conserved region in a novel thermostable chitosanase (TCH-2) from Bacillus coagulans CK108 was investigated. Each of the conserved amino acid residues (Leu64, Glu80, Glu94, Asp98, and Gly108) was changed to aspartate and glutamine or asparagine and glutamate by site-directed mutagenesis, respectively. Kinetic parameters for colloidal chitosan hydrolysis were determined with wild-type and 10 mutant chitosanases. The Leu64 Arg and Leu64 Gln mutations were essentially inactive and kinetic parameters such as V max and k cat were approximately 1/107 of those of the wild-type enzyme. The Asp98 Asn mutation did not affect the K m value significantly, but decreased k cat to 15% of that of wild-type chitosanase. On the other hand, the Asp98 srarr; Glu mutation affected neither K m nor k cat. The observation that approximately 15% of activity remained after the substitution of Asp98 by Asn indicated that the carboxyl side chain of Asp98 is not absolutely required for catalytic activity. These results indicate that the Leu64 residue is directly involved in the catalytic activity of TCH-2.  相似文献   

3.
Clostridium paraputrificum M-21 beta-N-acetylglucosaminidase 3A (Nag3A) is an enzyme classified in family 3 of the glycoside hydrolases. To identify catalytic residues of this enzyme, mutations were introduced into highly conserved Glu and Asp residues. Replacement of Asp175 with Ala abolished the catalytic activity without change in the circular dichroism spectrum, strongly suggesting that this residue is a catalytic residue, a nucleophile/base or a proton donor. Since the K(m) values of mutant enzymes D119N, D229N, D229A and D274N increased 17 to 41 times as compared with that of wild-type enzyme, Asp119, Asp229, and Asp274 appear to be involved in substrate recognition and binding. Taking previous studies into consideration, we presume that Asp303 is the catalytic nucleophile and Asp175 is the proton donor of C. paraputrificum Nag3A.  相似文献   

4.
SDH (l-serine dehydratase, EC 4.3.1.17) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes dehydration of l-Ser/Thr to yield pyruvate/ketobutyrate and ammonia. A SDH isoform (cSDH) found in human cancer cell lines has relatively low catalytic activity in comparison with the liver enzyme (hSDH). The crystal structure of cSDH has been determined at 2.8 angstroms resolution. A PLP is covalently attached to K48 by Schiff-base linkage in the active site. The ring nitrogen of PLP is involved in a H-bonding with C309, but is apparently not protonated. Twenty-three amino residues that compose the active site surfaces were identified. The human and rat liver enzymes (hSDH and rSDH) have the same residues, while residues G72, A172, and S228 in cSDH are replaced with A66, S166, and A222, respectively, in hSDH. These residues in hSDH and cSDH were mutated to make complementary pairs of mutated enzymes, and their kinetic parameters were determined. C303 of hSDH and C309 of cSDH which are H-bonding partner of the ring nitrogen of PLP were mutated to alanine and their kinetic parameters were also determined. The crystal structures and the mutation data suggest that having a glycine at residue 72 of cSDH is the major reason for the reduction of catalytic activity of cSDH. Changing alanine to glycine at residue 72 increases the flexibility of the substrate binding-loop (71S(G/A)GN74), so that the bound substrate and PLP are not pushed deep into the active cleft. Consequently, the proton transfer rate from S(G) of C309 to N1 of the bound PLP is decreased, which determines the rate of catalytic reaction.  相似文献   

5.
In the N-terminal domain of thermolysin, two polypeptide strands, Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122, are connected by a short loop, Asn116-Gly117, to form an anti-parallel β-sheet. The Asn112-Trp115 strand is located in the active site, while the Ser118-Tyr122 strand and the Asn116-Gly117 loop are located outside the active site. In this study, we explored the catalytic role of Gly117 by site-directed mutagenesis. Five variants, G117A (Gly117 is replaced by Ala), G117D, G117E, G117K, and G117R, were produced by co-expressing in Escherichia coli the mature and pro domains as independent polypeptides. The production levels were in the order G117E > wild type > G117K, G117R > G117D. G117A was hardly produced. This result is in contrast to our previous one that all 72 active-site thermolysin variants were produced at the similar levels whether they retained activity or not (M. Kusano et al. J. Biochem., 145, 103-113 (2009)). G117E exhibited lower activity in the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and higher activity in the hydrolysis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester than the wild-type thermolysin. G117K and G117R exhibited considerably reduced activities. This suggests that Gly117 plays an important role in the activity and stability of thermolysin, presumably by affecting the geometries of the Asn112-Trp115 and Ser118-Tyr122 strands.  相似文献   

6.
Apolipoprotein CII (apoCII) activates lipoprotein lipase (LPL). Seven residues, located on one face of a model alpha-helix spanning residues 59-75, are fully conserved in apoCII from ten different animal species. We have mutated these residues one by one. Substitution of Ala(59) by glycine, or Thr(62) and Gly(65) by alanine did not change the activation, indicating that these residues are outside the LPL-binding site. Replacement of Tyr(63), Ile(66), Asp(69), or Gln(70) by alanine lowered the affinity for LPL and the catalytic activity of the LPL-apoCII complex. For each residue several additional replacements were made. Most mutants retained some activating ability, but replacement of Tyr(63) by phenylalanine or tryptophan and Gln(70) by glutamate caused almost complete loss of activity. All mutants bound to liposomes with similar affinity as wild-type apoCII, and they also bound with similar affinity to LPL in the absence of hydrolyzable lipids. However, the inactive mutants did not compete with wild-type apoCII in the activation assay. Therefore, we conclude that the productive apoCII-LPL interaction may be dependent on substrate molecules. In summary, our data demonstrate that residues 63, 66, 69, and 70 are of special importance for the function of apoCII, but no single amino acid residue is absolutely crucial.  相似文献   

7.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

8.
Mammalian mitochondrial membranes express two active but distinct carnitine palmitoyltransferases: carnitine palmitoyltransferase I (CPTI), which is malonyl coA-sensitive and detergent-labile; and carnitine palmitoyltransferase II (CPTII), which is malonyl coA-insensitive and detergent-stable. To determine the role of the highly conserved C-terminal acidic residues glutamate 487 (Glu(487)) and glutamate 500 (Glu(500)) on catalytic activity in rat liver CPTII, we separately mutated these residues to alanine, aspartate, or lysine, and the effect of the mutations on CPTII activity was determined in the Escherichia coli-expressed mutants. Substitution of Glu(487) with alanine, aspartate, or lysine resulted in almost complete loss in CPTII activity. Because a conservative substitution mutation of this residue, Glu(487) with aspartate (E487D), resulted in a 97% loss in activity, we predicted that Glu(487) would be at the active-site pocket of CPTII. The substantial loss in CPTII activity observed with the E487K mutant, along with the previously reported loss in activity observed in a child with a CPTII deficiency disease, establishes that Glu(487) is crucial for maintaining the configuration of the liver isoform of the CPTII active site. Substitution of the conserved Glu(500) in CPTII with alanine or aspartate reduced the V(max) for both substrates, suggesting that Glu(500) may be important in stabilization of the enzyme-substrate complex. A conservative substitution of Glu(500) to aspartate resulted in a significant decrease in the V(max) for the substrates. Thus, Glu(500) may play a role in substrate binding and catalysis. Our site-directed mutagenesis studies demonstrate that Glu(487) in the liver isoform of CPTII is essential for catalysis.  相似文献   

9.
Azurocidin belongs to the serprocidin family, but it is devoid of proteolytic activity due to a substitution of His and Ser residues in the catalytic triad. The aim of this study was to reconstitute the active site of azurocidin by site-directed mutagenesis, analyze its processing and restored proteolytic activity. Azurocidin expressed in Sf9 insect cells possessing the reconstituted His41-Asp89-Ser175 triad exhibited significant proteolytic activity toward casein with a pH optimum of approximately 8-9, but a reconstitution of only one active site amino acid did not result in proteolytically active protein. Enzymatically active recombinant azurocidin caused cleavage of the C-terminal fusion tag with the primary cleavage site after lysine at Lys-Leu and after alanine at Ala-Ala, and the secondary cleavage site after arginine at Arg-Gln, as well as with low efficiency caused cleavage of insulin chain B after leucine at Leu-Tyr and Leu-Cys, and after alanine at Ala-Leu. We demonstrate that cleavage of the azurocidin C-terminal tripeptide is not necessary for its enzymatic activity. The first isoleucine present in mature azurocidin can be replaced by similar amino acids, such as leucine or valine, but its substitution by histidine or arginine decreases proteolytic activity.  相似文献   

10.
Suggestions for "safe" residue substitutions in site-directed mutagenesis   总被引:25,自引:0,他引:25  
The conserved topological structure observed in various molecular families such as globins or cytochromes c allows structural equivalencing of residues in every homologous structure and defines in a coherent way a global alignment in each sequence family. A search was performed for equivalent residue pairs in various topological families that were buried in protein cores or exposed at the protein surface and that had mutated but maintained similar unmutated environments. Amino acid residues with atoms in contact with the mutated residue pairs defined the environment. Matrices of preferred amino acid exchanges were then constructed and preferred or avoided amino acid substitutions deduced. Given the conserved atomic neighborhoods, such natural in vivo substitutions are subject to similar constrains as point mutations performed in site-directed mutagenesis experiments. The exchange matrices should provide guidelines for "safe" amino acid substitutions least likely to disturb the protein structure, either locally or in its overall folding pathway, and most likely to allow probing the structural and functional significance of the substituted site.  相似文献   

11.
The metalloprotease clan of the metzincins derive their name from the presence of a conserved methionine residue that is located on the C-terminal side of the zinc-binding consensus sequence HEXXHXXGXXH. This methionine residue is located in a rather divergent part of the primary sequence but is structurally very well conserved. It is located under the pyramidal base of the three histidine residues that coordinate the catalytic zinc ion and is not involved in any direct contact with the metal nor the substrate. In order to clarify its role, this methionine residue (M226) of the protease C from Erwinia chrysanthemi has been mutated to various other amino acids. The mutants M226L, M226A, M226I were sufficiently stable to be isolated, while the mutants M226H, M226S and M226N could not be purified. The kinetic properties of these mutants were analysed. All mutants showed decreased activity, whereby increases in K(M) as well as decreases in k(cat) were observed. The M226L mutant and M226C-E189 K double mutant, which has the catalytic glutamic acid substituted as well, could be crystallised. The structure of the M226L mutant was determined to a resolution of 2.0 A and refined to R(free) of 0.20. The structure is isomorphous to the wild-type and does not show large differences, with the exception of a very small movement of the zinc-liganding histidine residues. The M226C-E189 K double mutant crystal structure has been refined to an R(free) of 0.20 at 2.1 A resolution. A small rearrangement of the zinc-liganding histidine residues can be detected, which leads to a slightly different zinc coordination and could explain the decrease in activity.  相似文献   

12.
Leukotriene A4 hydrolase (LTA-H) is a bifunctional protein that has aminopeptidase activity, but also contains an epoxide hydrolase activity that converts leukotriene (LT)A4 to LTB4. The lipid metabolic activity of this enzyme plays a central role in the control of polymorphonuclear leukocyte function and in the development of inflammation. LTA-H is widely spread in many mammalian tissues, although it appears to be inactive in many cases. Regulation of this enzyme's activity by phosphorylation of a serine at residue 415 has recently been described. Since the activation of LTA-H in the presence of activated PMNL would likely lead to a substantial increase in the production of inflammatory lipids, regulation of LTA-H presents a novel potential target for anti-inflammatory therapy. We have now made a series of site-directed mutants at this site to test the importance of this residue to the activity of LTA-H. Replacement of the critical serine with threonine or glutamine has little effect on either the epoxide hydrolase or aminopeptidase activities. However, replacing serine with a negatively charged amino acid (either aspartate or glutamate), intended to mimic phosphorylation at that site, causes significant reduction in epoxide hydrolase activity (50-70%). These mutations have little effect on the aminopeptidase activity of the LTA-H, suggesting that the mutation models the regulatory event and is not simply due to improper folding of the protein.  相似文献   

13.
A thermostable aspartase gene (aspB) from Bacillus sp. YM55-1 was cloned and the gene sequenced. The aspB gene (1407 bp ORF) encodes a protein with a molecular mass of 51 627 Da, consisting of 468 amino-acid residues. An amino-acid sequence comparison revealed that Bacillus YM55-1 aspartase shared 71% homology with Bacillus subtilis aspartase and 49% with Escherichia coli and Pseudomonas fluorescens aspartases. The E. coli TK237/pUCASPB strain, which was obtained by transforming E. coli TK237 (aspartase-null strain) with a vector plasmid (pUCASPB) containing the cloned aspB gene, produced a large amount of the enzyme corresponding to > 10% of the total soluble protein. The over-expressed recombinant enzyme (native molecular mass: 200 kDa) was purified effectively and rapidly using heat treatment and affinity chromatography. In order to probe the catalytic residues of this enzyme, two conserved amino-acid residues, Lys183 and His134, were individually mutated to alanine. Although the tertiary structure of each mutant was estimated to be the same as that of wild-type aspartase in CD and fluorescence measurements, the Lys183Ala mutant lost its activity completely, whereas His134Ala retained full activity. This finding suggests that Lys183 may be involved in the catalytic activity of this thermostable Bacillus YM55-1 aspartase.  相似文献   

14.
Alteration of catalytic properties of chymosin by site-directed mutagenesis   总被引:2,自引:0,他引:2  
Artificial mutations of chymosin by recombinant DNA techniques were generated to analyze the structure--function relationship in this characteristic aspartic proteinase. In order to prepare the mutant enzymes in their active form, we established procedures for purification of correctly refolded prochymosin from inclusion bodies produced in Escherichia coli transformants and for its subsequent activation. Mutagenesis by linker insertion into cDNA produced several mutants with an altered ratio of milk clotting activity to proteolytic activity and a different extent of stability. In addition to these mutants, several mutants with a single amino acid exchange were also constructed by site-directed mutagenesis and kinetic parameters of these mutant enzymes were determined by using synthetic hexa- and octa-peptides as substrates. Exchange of Tyr75 on the flap of the enzyme to Phe caused a marked change of substrate specificity due to the change of kcat or Km, depending on the substrate used. Exchange of Val110 and Phe111 also caused a change of kinetic parameters, which indicates functional involvement of these hydrophobic residues in both the catalytic function and substrate binding. The mutant Lys220----Leu showed a marked shift of the optimum pH to the acidic side for hydrolysis of acid-denatured haemoglobin along with a distinct increase in kcat for the octa-peptide in a wide pH range.  相似文献   

15.
The capacity of lipase LipK107 from Proteus sp. catalyzing the kinetic resolution of racemates was investigated. The resolution of racemic 1-phenylethanol in organic medium was selected as model reaction. The conversion was dramatically dependent on the water content and the LipK107 showed high activity in a wide range of water content without appreciable loss of enzyme enantiodiscrimination. Besides, the chain length of acyl donor also had a significant effect on the conversion, and the highest enantioselectivity was achieved when methyl palmitate was used. Based on the analysis of computer model structure of LipK107, different mutations were introduced into the lid region. Each derivative of LipK107 was expressed, purified, and assessed of the activity. According to the prediction, using mutants E130L + K131I and T138V as catalyst, respectively, the conversions of 1-phenylethanol improved greatly with a slight increase of enantiodiscrimination. In addition, the effects of hydrophobicity and electrostatic of the lid on lipase activity were determined. This work indicated that the modification of the lid might considerably enhance the activity and improve the yield of catalytic reactions, which could apply to other lipases. The computer simulations would make the process of identifying amino acids for substitution efficiently.  相似文献   

16.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

17.
Mammalian hormone-sensitive lipase (HSL) has given its name to a family of primarily prokaryotic proteins which are structurally related to type B carboxylesterases. In many of these alpha/beta hydrolases, a conserved HG-dipeptide flanks the catalytic pocket. In HSL this dipeptide is followed by two additional glycine residues. Through site-directed mutagenesis, we have investigated the importance of this motif for enzyme activity. Since the presence of multiple glycine residues in a critical region could contribute to cold adaptation by providing local flexibility, we studied the effect of mutating these residues on the psychrotolerant property of HSL. Any double mutation rendered the enzyme completely inactive, without any major effect on the enzyme stability. The partially active single mutants retained the same proportion of activity at reduced temperatures as the wild-type enzyme. These results do not support a role for the HGGG motif in catalysis at low temperatures, but provide further validation of the current three-dimensional model of HSL. Rat HSL was found to be relatively more active than human HSL at low temperatures. This difference was, however, not due to the 12 amino acids which are present in the regulatory module of the rat enzyme but absent in human HSL.  相似文献   

18.
Carboxylesterases are enzymes that catalyze the hydrolysis of ester and amide moieties. These enzymes have an active site that is composed of a nucleophile (Ser), a base (His), and an acid (Glu) that is commonly known as a catalytic triad. It has previously been observed that the majority of carboxylesterases and lipases contain a second conserved serine in their active site [Proteins, 34 (1999) 184]. To investigate whether this second serine is also involved in the catalytic mechanism, it was mutated to an alanine, a glycine or a cysteine. Site-directed mutagenesis of this conserved serine resulted in a loss of specific activity, in both the S247G and S247A mutants (5- to 15-fold), which was due to a decrease in the rate of catalysis (kcat). Due to the instability of the S247C mutant no reliable data could be attained. A carbamate inhibitor, carbaryl, was then employed to investigate whether this decrease in the kcat was due to the rate of formation of the acyl-enzyme intermediate (k2) or the rate of deacylation (k3). The S247A mutant was found only to alter k2 (2.5-fold decrease), with no effect on k3. Together with information inferred from a human carboxylesterase crystal structure, it was concluded that this serine provides an important structural support for the spatial orientation of the glutamic acid, stabilizing the catalytic triad so that it can perform the hydrolysis.  相似文献   

19.
A salt link buried in the domain interface of phosphoglycerate kinase has been implicated as being important in controlling the conformational transition from the open, or substrate-binding, to the closed, or catalytically competent, form of the enzyme. The residues contributing to the salt link are remote from the active site, but are connected to the substrate-binding sites through strands of beta-sheet. It has been suggested that these residues may also mediate sulphate and anion activation. These assumptions have been tested by examining the properties of a site-directed mutant (histidine-388----glutamine-388). The expression and overall structural integrity of the mutant, produced in yeast from a multicopy plasmid, remains essentially unaltered from the wild-type enzyme. However, the mutant enzyme has a kcat. reduced by 5-fold. The Km for ATP is lowered by 3-fold, and the Km for 3-phosphoglycerate is unaffected. The effects of sulphate on activity over a wide range of substrate concentrations appear to be the same for both the mutant and wild-type enzymes. These results lead to a reappraisal of the mechanistic role of the inter-domain histidine-glutamate interaction, as well as a refinement of the kinetic model of the enzyme.  相似文献   

20.
The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enzyme activity, does not serve as the nucleophile in the catalytic centre as proposed. When it is replaced by Ala, the resulting mutant enzyme E368A exhibits comparable activity as found for E368D in respect to vanillin. Enzyme activities of wild-type and E368A towards several substrates were not affected at the same level. His360 at position 1 of NRD1beta glycosyltransferases occupies a more crucial role as expected. When it is exchanged against other basic amino acids such as Lys or Arg the enzyme activity decreases approximately 1000-fold. Replacement of His360 by Glu leads to a mutant enzyme (H360E) with an approximately 4000-fold lower activity compared with the wild-type. This mutein still produces a beta-glucoside, not an alpha-glucoside and therefore indicates that generation of the typical E-E motif of NRD1alpha glycosyltransferases does not convert a NRD1beta enzyme into a NRD1alpha enzyme. The presented data do not support several suggestions made in the literature about catalytic amino acids involved in the glycosyltransfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号