首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport protein particle (TRAPP; also known as trafficking protein particle), a multimeric guanine nucleotide-exchange factor for the yeast GTPase Ypt1 and its mammalian homologue, RAB1, regulates multiple membrane trafficking pathways. TRAPP complexes exist in three forms, each of which activates Ypt1 or RAB1 through a common core of subunits and regulates complex localization through distinct subunits. Whereas TRAPPI and TRAPPII tether coated vesicles during endoplasmic reticulum to Golgi and intra-Golgi traffic, respectively, TRAPPIII has recently been shown to be required for autophagy. These advances illustrate how the TRAPP complexes link Ypt1 and RAB1 activation to distinct membrane-tethering events.  相似文献   

2.
Since the late 1990s, a number of multisubunit tethering complexes (MTCs) have been described that function in membrane trafficking events: TRAPP I, TRAPP II, TRAPP III, COG, HOPS, CORVET, Dsl1, GARP and exocyst. On the basis of structural and sequence similarities, they have been categorized as complexes associated with tethering containing helical rods (CATCHR) (Dsl1, COG, GARP and exocyst) or non‐CATCHR (TRAPP I, II and III, HOPS and CORVET) complexes (Yu IM, Hughson FM. Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 2010;26:137–156). Both acronyms (CATCHR and MTC) imply these complexes tether opposing membranes to facilitate fusion. The main question we will address is: have these complexes been formally demonstrated to function as tethers? If the answer is no, then is it premature or even correct to refer to them as tethers? In this commentary, we will argue that the vast majority of MTCs have not been demonstrated to act as a tether. We propose that a distinction between the terms tether and tethering factor be considered to address this issue.  相似文献   

3.
Vesicle tethers are long coiled–coil proteins or multisubunit complexes that provide specificity to the membrane fusion process by linking cargo‐containing vesicles to target membranes. Transport protein particle (TRAPP) is a well‐characterized multisubunit tethering complex that acts as a GTP exchange factor and is present in two cellular forms: a 7 subunit TRAPP I complex required for ER‐to‐Golgi transport, and a 10 subunit TRAPP II complex that mediates post‐Golgi trafficking. In this work, we have identified Tca17, which is encoded by the non‐essential ORF YEL048c, as a novel binding partner of the TRAPP complex. Loss of Tca17 or any of the non‐essential TRAPP subunits (Trs33, Trs65 and Trs85) leads to defects in the Golgi‐endosomal recycling of Snc1. We show that Tca17, a Sedlin_N family member similar to the TRAPP subunit Trs20, interacts with the TRAPP complex in a Trs33‐ and Trs65‐dependent manner. Mutation of TCA17 or TRS33 perturbs the association of Trs65 with the rest of the TRAPP complex and alters the localization of the Rab GTPase Ypt31. These data support a model in which Tca17 acts with Trs33 and Trs65 to promote the assembly and/or stability of the TRAPP complex and regulate its activity in post‐Golgi trafficking events.  相似文献   

4.
The Golgi apparatus is a central hub for both protein and lipid trafficking/sorting and is also a major site for glycosylation in the cell. This organelle employs a cohort of peripheral membrane proteins and protein complexes to keep its structural and functional organization. The conserved oligomeric Golgi (COG) complex is an evolutionary conserved peripheral membrane protein complex that is proposed to act as a retrograde vesicle tethering factor in intra-Golgi trafficking. The COG protein complex consists of eight subunits, distributed in two lobes, Lobe A (Cog1-4) and Lobe B (Cog5-8). Malfunctions in the COG complex have a significant impact on processes such as protein sorting, glycosylation, and Golgi integrity. A deletion of Lobe A COG subunits in yeasts causes severe growth defects while mutations in COG1, COG7, and COG8 in humans cause novel types of congenital disorders of glycosylation. These pathologies involve a change in structural Golgi phenotype and function. Recent results indicate that down-regulation of COG function results in the resident Golgi glycosyltransferases/glycosidases to be mislocalized or degraded.  相似文献   

5.
Structural analysis of conserved oligomeric Golgi complex subunit 2   总被引:2,自引:0,他引:2  
The conserved oligomeric Golgi (COG) complex is strongly implicated in retrograde vesicular trafficking within the Golgi apparatus. Although its mechanism of action is poorly understood, it has been proposed to function by mediating the initial physical contact between transport vesicles and their membrane targets. An analogous role in tethering vesicles has been suggested for at least six additional large multisubunit complexes, including the exocyst, a complex essential for trafficking to the plasma membrane. Here we report the solution structure of a large portion of yeast Cog2p, one of eight subunits composing the COG complex. The structure reveals a six-helix bundle with few conserved surface features but a general resemblance to recently determined crystal structures of four different exocyst subunits. This finding provides the first structural evidence that COG, like the exocyst and potentially other tethering complexes, is constructed from helical bundles. These structures may represent platforms for interaction with other trafficking proteins including SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) and Rabs.  相似文献   

6.
Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle) complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.  相似文献   

7.
We used multiple approaches to investigate the role of Rab6 relative to Zeste White 10 (ZW10), a mitotic checkpoint protein implicated in Golgi/endoplasmic reticulum (ER) trafficking/transport, and conserved oligomeric Golgi (COG) complex, a putative tether in retrograde, intra-Golgi trafficking. ZW10 depletion resulted in a central, disconnected cluster of Golgi elements and inhibition of ERGIC53 and Golgi enzyme recycling to ER. Small interfering RNA (siRNA) against RINT-1, a protein linker between ZW10 and the ER soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 18, produced similar Golgi disruption. COG3 depletion fragmented the Golgi and produced vesicles; vesicle formation was unaffected by codepletion of ZW10 along with COG, suggesting ZW10 and COG act separately. Rab6 depletion did not significantly affect Golgi ribbon organization. Epistatic depletion of Rab6 inhibited the Golgi-disruptive effects of ZW10/RINT-1 siRNA or COG inactivation by siRNA or antibodies. Dominant-negative expression of guanosine diphosphate-Rab6 suppressed ZW10 knockdown induced-Golgi disruption. No cross-talk was observed between Rab6 and endosomal Rab5, and Rab6 depletion failed to suppress p115 (anterograde tether) knockdown-induced Golgi disruption. Dominant-negative expression of a C-terminal fragment of Bicaudal D, a linker between Rab6 and dynactin/dynein, suppressed ZW10, but not COG, knockdown-induced Golgi disruption. We conclude that Rab6 regulates distinct Golgi trafficking pathways involving two separate protein complexes: ZW10/RINT-1 and COG.  相似文献   

8.
The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG‐congenital disorders of glycosylation (COG‐CDG). To gain better understanding of COG‐CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha‐1,3‐mannosyl‐glycoprotein 2‐beta‐N‐acetylglucosaminyltransferase and uridine diphosphate‐glucose 4‐epimerase (GALE), which contribute to proper N‐ and O‐glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7‐CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.   相似文献   

9.
Defects in conserved oligomeric Golgi (COG) complex result in multiple deficiencies in protein glycosylation. On the other hand, acute knock-down (KD) of Cog3p (COG3 KD) causes accumulation of intra-Golgi COG complex-dependent (CCD) vesicles. Here, we analyzed cellular phenotypes at different stages of COG3 KD to uncover the molecular link between COG function and glycosylation disorders. For the first time, we demonstrated that medial-Golgi enzymes are transiently relocated into CCD vesicles in COG3 KD cells. As a result, Golgi modifications of both plasma membrane (CD44) and lysosomal (Lamp2) glycoproteins are distorted. Localization of these proteins is not altered, indicating that the COG complex is not required for anterograde trafficking and accurate sorting. COG7 KD and double COG3/COG7 KD caused similar defects with respect to both Golgi traffic and glycosylation, suggesting that the entire COG complex orchestrates recycling of medial-Golgi-resident proteins. COG complex-dependent docking of isolated CCD vesicles was reconstituted in vitro, supporting their role as functional trafficking intermediates. Altogether, the data suggest that constantly cycling medial-Golgi enzymes are transported from distal compartments in CCD vesicles. Dysfunction of COG complex leads to separation of glycosyltransferases from anterograde cargo molecules passing along secretory pathway, thus affecting normal protein glycosylation.  相似文献   

10.
Cell surface lectin staining, examination of Golgi glycosyltransferases stability and localization, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis were employed to investigate conserved oligomeric Golgi (COG)-dependent glycosylation defects in HeLa cells. Both Griffonia simplicifolia lectin-II and Galanthus nivalus lectins were specifically bound to the plasma membrane glycoconjugates of COG-depleted cells, indicating defects in activity of medial- and trans-Golgi-localized enzymes. In response to siRNA-induced depletion of COG complex subunits, several key components of Golgi glycosylation machinery, including MAN2A1, MGAT1, B4GALT1 and ST6GAL1, were severely mislocalized. MALDI-TOF analysis of total N-linked glycoconjugates indicated a decrease in the relative amount of sialylated glycans in both COG3 KD and COG4 KD cells. In agreement to a proposed role of the COG complex in retrograde membrane trafficking, all types of COG-depleted HeLa cells were deficient in the Brefeldin A- and Sar1 DN-induced redistribution of Golgi resident glycosyltransferases to the endoplasmic reticulum. The retrograde trafficking of medial- and trans-Golgi-localized glycosylation enzymes was affected to a larger extent, strongly indicating that the COG complex regulates the intra-Golgi protein movement. COG complex-deficient cells were not defective in Golgi re-assembly after the Brefeldin A washout, confirming specificity in the retrograde trafficking block. The lobe B COG subcomplex subunits COG6 and COG8 were localized on trafficking intermediates that carry Golgi glycosyltransferases, indicating that the COG complex is directly involved in trafficking and maintenance of Golgi glycosylation machinery.  相似文献   

11.
Mutations in the trafficking protein particle complex C2 protein (TRAPPC2), a mammalian ortholog of yeast Trs20p and a component of the trafficking protein particle (TRAPP) vesicle tethering complex, have been linked to the skeletal disorder spondyloepiphyseal dysplasia tarda (SEDT). Intriguingly, the X-linked TRAPPC2 is just one of a complement of Trs20-related genes in humans. Here we characterize TRAPPC2L, a novel, highly conserved TRAPP-interacting protein related to TRAPPC2 and the uncharacterized yeast open reading frame YEL048c . TRAPPC2L and TRAPPC2 genes are found in pairs across species and show broad and overlapping expression, suggesting they are functionally distinct, a notion supported by yeast complementation studies and biochemical characterization. RNA interference-mediated knockdown of either TRAPPC2L or TRAPPC2 in HeLa cells leads to fragmentation of the Golgi, implicating both proteins in Golgi dynamics. Gradient fractionation of cellular membranes indicates that TRAPPC2L is found with a portion of cellular TRAPP on very low-density membranes whereas the remainder of TRAPP, but not TRAPPC2L, is found associated with Golgi markers. YEL048c displays genetic interactions with TRAPP II-encoding genes and the gene product co-fractionates with and interacts with yeast TRAPP II. Taken together these results indicate that TRAPPC2L and its yeast ortholog YEL048c are novel TRAPP-interacting proteins that may modulate the function of the TRAPP II complex.  相似文献   

12.
Vesicle-mediated transport is a process carried out by virtually every cell and is required for the proper targeting and secretion of proteins. As such, there are numerous players involved to ensure that the proteins are properly localized. Overall, transport requires vesicle budding, recognition of the vesicle by the target membrane and fusion of the vesicle with the target membrane resulting in delivery of its contents. The initial interaction between the vesicle and the target membrane has been referred to as tethering. Because this is the first contact between the two membranes, tethering is critical to ensuring that specificity is achieved. It is therefore not surprising that there are numerous 'tethering factors' involved ranging from multisubunit complexes, coiled-coil proteins and Rab guanosine triphosphatases. Of the multisubunit tethering complexes, one of the best studied at the molecular level is the evolutionarily conserved TRAPP complex. There are two forms of this complex: TRAPP I and TRAPP II. In yeast, these complexes function in a number of processes including endoplasmic reticulum-to-Golgi transport (TRAPP I) and an ill-defined step at the trans Golgi (TRAPP II). Because the complex was first reported in 1998 (1), there has been a decade of studies that have clarified some aspects of its function but have also raised further questions. In this review, we will discuss recent advances in our understanding of yeast and mammalian TRAPP at the structural and functional levels and its role in disease while trying to resolve some apparent discrepancies and highlighting areas for future study.  相似文献   

13.
Recently, we reported that two siblings presenting with the clinical syndrome congenital disorders of glycosylation (CDG) have mutations in the gene encoding Cog7p, a member of the conserved oligomeric Golgi (COG) complex. In this study, we analyzed the localization and trafficking of multiple Golgi proteins in patient fibroblasts under a variety of conditions. Although the immunofluorescent staining pattern of several Golgi proteins was indistinguishable from normal, the staining of endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC)-53 and the vesicular-soluble N-ethylmaleimide-sensitive factor attachment protein receptors GS15 and GS28 was abnormal, and the steady-state level of GS15 was greatly decreased. Retrograde transport of multiple Golgi proteins to the ER in patient fibroblasts via brefeldin A-induced tubules was significantly slower than occurs in normal fibroblasts, whereas anterograde protein trafficking was much less affected. After prolonged treatment with brefeldin A, several Golgi proteins were detected in clusters that colocalize with the microtubule-organizing center in patient cells. All of these abnormalities were normalized in COG7-corrected patient fibroblasts. These results serve to better define the role of the COG complex in facilitating protein trafficking between the Golgi and ER and provide a diagnostic framework for the identification of CDG defects involving trafficking proteins.  相似文献   

14.
The COG complex is a cytosolic heteromeric Golgi complex constituted of 8 subunits (Cog1 to Cog8) and involved in retrograde vesicular Golgi trafficking. The involvement of this complex in glycosylation and more specifically in Golgi glycosyltransferases localization has been highlighted with the discovery of COG subunit deficiencies leading to CDG (Congenital Disorders of Glycosylation), a group of inherited disorders of glycosylation. To date, many COG deficient CDG patients have been discovered and this article reviews the birth and rise of this group of defects. The architecture of the COG complex and its cellular functions in Golgi trafficking and Golgi glycosylation are discussed.  相似文献   

15.
The conserved oligomeric Golgi (COG) complex is an evolutionarily conserved multi-subunit protein complex that regulates membrane trafficking in eukaryotic cells. In this work we used short interfering RNA strategy to achieve an efficient knockdown (KD) of Cog3p in HeLa cells. For the first time, we have demonstrated that Cog3p depletion is accompanied by reduction in Cog1, 2, and 4 protein levels and by accumulation of COG complex-dependent (CCD) vesicles carrying v-SNAREs GS15 and GS28 and cis-Golgi glycoprotein GPP130. Some of these CCD vesicles appeared to be vesicular coat complex I (COPI) coated. A prolonged block in CCD vesicles tethering is accompanied by extensive fragmentation of the Golgi ribbon. Fragmented Golgi membranes maintained their juxtanuclear localization, cisternal organization and are competent for the anterograde trafficking of vesicular stomatitis virus G protein to the plasma membrane. In a contrast, Cog3p KD resulted in inhibition of retrograde trafficking of the Shiga toxin. Furthermore, the mammalian COG complex physically interacts with GS28 and COPI and specifically binds to isolated CCD vesicles.  相似文献   

16.
Bet3p, a component of a large novel complex called TRAPP, acts upstream of endoplasmic reticulum (ER)-Golgi SNAREs. Unlike the SNAREs, which reside on multiple compartments, Bet3p is localized exclusively to Golgi membranes. While other proteins recycle from the Golgi to the ER, Bet3p and other TRAPP subunits remain associated with this membrane under conditions that block anterograde traffic. We propose that the persistent localization of TRAPP to the Golgi may be important for its role in docking vesicles to this membrane. Consistent with this proposal, we find that transport vesicles fail to bind to Golgi membranes in vitro in the absence of Bet3p. Binding is restored by the addition of cytosol containing Bet3p. These findings indicate that TRAPP stably associates with the Golgi and is required for vesicle docking.  相似文献   

17.
Autophagosomes and Cvt vesicles are limited by two membrane layers. The biogenesis of these unconventional vesicles and the origin of their membranes are hardly understood. Here we identify in Saccharomyces cerevisiae Trs85, a nonessential component of the TRAPP complexes, to be required for the biogenesis of Cvt vesicles. The TRAPP complexes function in endoplasmic reticulum-to-Golgi and Golgi trafficking. Growing trs85delta cells show a defect in the organization of the preautophagosomal structure. Although proaminopeptidase I is normally recruited to the preautophagosomal structure, the recruitment of green fluorescent protein-Atg8 depends on Trs85. Autophagy proceeds in the absence of Trs85, albeit at a reduced rate. Our electron microscopic analysis demonstrated that the reduced autophagic rate of trs85delta cells does not result from a reduced size of the autophagosomes. Growing and starved cells lacking Trs85 did not show defects in vacuolar biogenesis; mature vacuolar proteinase B and carboxypeptidase Y were present. Also vacuolar acidification was normal in these cells. It is known that mutations impairing the integrity of the ER or Golgi block both autophagy and the Cvt pathway. But the phenotypes of trs85delta cells show striking differences to those seen in mutants with defects in the early secretory pathway. This suggests that Trs85 might play a direct role in the Cvt pathway and autophagy.  相似文献   

18.
Multiple mutations in different subunits of the tethering complex Conserved Oligomeric Golgi (COG) have been identified as a cause for Congenital Disorders of Glycosylation (CDG) in humans. Yet, the mechanisms by which COG mutations induce the pleiotropic CDG defects have not been fully defined. By detailed analysis of Cog8 deficiency in either HeLa cells or CDG‐derived fibroblasts, we show that Cog8 is required for the assembly of both the COG complex and the Golgi Stx5‐GS28‐Ykt6‐GS15 and Stx6‐Stx16‐Vti1a‐VAMP4 SNARE complexes. The assembly of these SNARE complexes is also impaired in cells derived from a Cog7‐deficient CDG patient. Likewise, the integrity of the COG complex is also impaired in Cog1‐, Cog4‐ and Cog6‐depleted cells. Significantly, deficiency of Cog1, Cog4, Cog6 or Cog8 distinctly influences the production of COG subcomplexes and their Golgi targeting. These results shed light on the structural organization of the COG complex and its subcellular localization, and suggest that its integrity is required for both tethering of transport vesicles to the Golgi apparatus and the assembly of Golgi SNARE complexes. We propose that these two key functions are generally and mechanistically impaired in COG‐associated CDG patients, thereby exerting severe pleiotropic defects.  相似文献   

19.
Tethering factors mediate initial interaction of transport vesicles with target membranes. Soluble N-ethylmaleimide–sensitive fusion protein attachment protein receptors (SNAREs) enable consequent docking and membrane fusion. We demonstrate that the vesicle tether conserved oligomeric Golgi (COG) complex colocalizes and coimmunoprecipitates with intra-Golgi SNARE molecules. In yeast cells, the COG complex preferentially interacts with the SNARE complexes containing yeast Golgi target (t)-SNARE Sed5p. In mammalian cells, hCog4p and hCog6p interact with Syntaxin5a, the mammalian homologue of Sed5p. Moreover, fluorescence resonance energy transfer reveals an in vivo interaction between Syntaxin5a and the COG complex. Knockdown of the mammalian COG complex decreases Golgi SNARE mobility, produces an accumulation of free Syntaxin5, and decreases the steady-state levels of the intra-Golgi SNARE complex. Finally, overexpression of the hCog4p N-terminal Syntaxin5a-binding domain destabilizes intra-Golgi SNARE complexes, disrupting the Golgi. These data suggest that the COG complex orchestrates vesicular trafficking similarly in yeast and mammalian cells by binding to the t-SNARE Syntaxin5a/Sed5p and enhancing the stability of intra-Golgi SNARE complexes.  相似文献   

20.
The Conserved Oligomeric Golgi (COG) complex is an eight-subunit (Cog1-8) peripheral Golgi protein involved in membrane trafficking and glycoconjugate synthesis. COG appears to participate in retrograde vesicular transport and is required to maintain normal Golgi structure and function. COG mutations interfere with normal transport, distribution, and/or stability of Golgi proteins associated with glycoconjugate synthesis and trafficking, and lead to failure of spermatogenesis in Drosophila melanogaster, misdirected migration of gonadal distal tip cells in Caenorhabditis elegans, and type II congenital disorders of glycosylation in humans. The mechanism by which COG influences Golgi structure and function is unclear. Immunogold electron microscopy was used to visualize the intraGolgi distribution of a functional, hemagglutinin epitope-labeled COG subunit, Cog1-HA, that complements the Cog1-deficiency in Cog1-null Chinese hamster ovary cells. COG was found to be localized primarily on or in close proximity to the tips and rims of the Golgi's cisternae and their associated vesicles and on vesicles and vesiculo-tubular structures seen on both the cis and trans-Golgi Network faces of the cisternal stacks, in some cases on COPI containing vesicles. These findings support the proposal that COG is directly involved in controlling vesicular retrograde transport of Golgi resident proteins throughout the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号