首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tie-dyed1 (tdy1) and tdy2 mutants of maize exhibit leaf regions with starch hyperaccumulation and display unusual genetic interactions, suggesting they function in the same physiological process. Tdy2 encodes a putative callose synthase and is expressed in developing vascular tissues of immature leaves. Radiolabelling experiments and transmission electron microscopy (TEM) revealed symplastic trafficking within the phloem was perturbed at the companion cell/sieve element interface. Here, we show that as reported for tdy2 mutants, tdy1 yellow leaf regions display an excessive oil-droplet phenotype in the companion cells. Based on the proposed function of Tdy2 as a callose synthase, our previous work characterizing Tdy1 as a novel, transmembrane-localized protein, and the present findings, we speculate how TDY1 and TDY2 might interact to promote symplastic transport of both solutes and developmentally instructive macromolecules during vascular development at the companion cell/sieve element interface.  相似文献   

2.
Baker RF  Braun DM 《Plant physiology》2008,146(3):1085-1097
Regulation of carbon partitioning is essential for plant growth and development. To gain insight into genes controlling carbon allocation in leaves, we identified mutants that hyperaccumulate carbohydrates. tie-dyed2 (tdy2) is a recessive mutant of maize (Zea mays) with variegated, nonclonal, chlorotic leaf sectors containing excess starch and soluble sugars. Consistent with a defect in carbon export, we found that a by-product of functional chloroplasts, likely a sugar, induces tdy2 phenotypic expression. Based on the phenotypic similarities between tdy2 and two other maize mutants with leaf carbon accumulation defects, tdy1 and sucrose export defective1 (sxd1), we investigated whether Tdy2 functioned in the same pathway as Tdy1 or Sxd1. Cytological and genetic studies demonstrate that Tdy2 and Sxd1 function independently. However, in tdy1/+; tdy2/+ F(1) plants, we observed a moderate chlorotic sectored phenotype, suggesting that the two genes are dosage sensitive and have a related function. This type of genetic interaction is referred to as second site noncomplementation and has often, though not exclusively, been found in cases where the two encoded proteins physically interact. Moreover, tdy1; tdy2 double mutants display a synergistic interaction supporting this hypothesis. Additionally, we determined that cell walls of chlorotic leaf tissues in tdy mutants contain increased cellulose; thus, tdy mutants potentially represent enhanced feedstocks for biofuels production. From our phenotypic and genetic characterizations, we propose a model whereby TDY1 and TDY2 function together in a single genetic pathway, possibly in homo- and heteromeric complexes, to promote carbon export from leaves.  相似文献   

3.
tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F2 families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.  相似文献   

5.
Baker RF  Braun DM 《Plant physiology》2007,144(2):867-878
The tie-dyed1 (tdy1) mutant of maize (Zea mays) produces chlorotic, anthocyanin-accumulating regions in leaves due to the hyperaccumulation of carbohydrates. Based on the nonclonal pattern, we propose that the accumulation of sucrose (Suc) or another sugar induces the tdy1 phenotype. The boundaries of regions expressing the tdy1 phenotype frequently occur at lateral veins. This suggests that lateral veins act to limit the expansion of tdy1 phenotypic regions by transporting Suc out of the tissue. Double mutant studies between tdy1 and chloroplast-impaired mutants demonstrate that functional chloroplasts are needed to generate the Suc that induces the tdy1 phenotype. However, we also found that albino cells can express the tdy1 phenotype and overaccumulate Suc imported from neighboring green tissues. To characterize the site and mode of action of Tdy1, we performed a clonal mosaic analysis. In the transverse dimension, we localized the function of Tdy1 to the innermost leaf layer. Additionally, we determined that if this layer lacks Tdy1, Suc can accumulate, move into adjacent genetically wild-type layers, and induce tdy1 phenotypic expression. In the lateral dimension, we observed that a tdy1 phenotypic region did not reach the mosaic sector boundary, suggesting that wild-type Tdy1 acts non-cell autonomously and exerts a short-range compensatory effect on neighboring mutant tissue. A model proposing that Tdy1 functions in the vasculature to sense high concentrations of sugar, up-regulate Suc transport into veins, and promote tissue differentiation and function is discussed.  相似文献   

6.
植物体内糖分子的长距离运输及其分子机制   总被引:1,自引:0,他引:1  
张懿  张大兵  刘曼 《植物学报》2015,50(1):107-121
植物器官(如叶、叶鞘、绿色的茎等)可以通过光合作用将CO2合成为碳水化合物, 并经过长距离运输到达库组织(如新生组织、花粉、果实等)中进行贮存或利用。蔗糖是高等植物长距离运输碳水化合物的主要形式。蔗糖分子从源到库的运输包括源组织韧皮部的装载、维管束的运输和库组织韧皮部的卸载3个步骤。遗传学和分子生物学研究证明, 蔗糖转运蛋白、转化酶和单糖转运蛋白在糖分子的装载和卸载过程中发挥重要作用。该文综述了目前对光合产物运输过程及其调控分子机制的最新研究进展。  相似文献   

7.
Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.

The defensin family member DEFENSIN 8 (DEF8) mediates both xylem cadmium (Cd) loading and phloem Cd unloading via the chelation and secretion mechanism in rice.  相似文献   

8.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   

9.
63Ni was applied to nonsenescent source leaves and found to be transported to sink tissues in pea (Pisum sativum L.) and geranium plants (Pelargonium zonale L.). The comparative mobilities (percent tracer transported out of source leaf ÷% 86Rb transported) for 63Ni in peas was 2.12 and in geranium 0.25. The value for the phloem mobile 86Rb was 1.00. By contrast, the comparative mobility of 45Ca, which is relatively immobile in the phloem, was low (0.05 in peas, 0.00 in geranium). Interruption of the phloem pathway between source and sink leaves by steam girdling almost completely inhibited 63Ni accumulation in the sink leaves of both species. We conclude that Ni is transported from nonsenescent source leaves to sink tissues via the phloem of leguminous and nonleguminous plants.  相似文献   

10.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

11.
12.
AtSUC2 (At1g22710) encodes a phloem-localized sucrose (Suc)/H(+) symporter necessary for efficient Suc transport from source tissues to sink tissues in Arabidopsis (Arabidopsis thaliana). AtSUC2 is highly expressed in the collection phloem of mature leaves, and its function in phloem loading is well established. AtSUC2, however, is also expressed strongly in the transport phloem, where its role is more ambiguous, and it has been implicated in mediating both efflux and retrieval to and from flanking tissues via the apoplast. To characterize the role of AtSUC2 in controlling carbon partitioning along the phloem path, AtSUC2 cDNA was expressed from tissue-specific promoters in an Atsuc2 mutant background. Suc transport in this mutant is highly compromised, as indicated by stunted growth and the accumulation of large quantities of sugar and starch in vegetative tissues. Expression of AtSUC2 cDNA from the 2-kb AtSUC2 promoter was sufficient to restore growth and carbon partitioning to nearly wild-type levels. The GALACTINOL SYNTHASE promoter of Cucumis melo (CmGAS1p) confers expression only in the minor veins of mature leaves, not in the transport phloem of larger leaf veins and stems. Mutant plants expressing AtSUC2 cDNA from CmGAS1p had intermediate growth and accumulated sugar and starch, but otherwise they had normal morphology. These characteristics support a role for AtSUC2 in retrieval but not efflux along the transport phloem and show that the only vital function of AtSUC2 in photoassimilate distribution is phloem loading. In addition, Atsuc2 mutant plants, although debilitated, do grow, and AtSUC2-independent modes of phloem transport are discussed, including an entirely symplastic pathway from mesophyll cells to sink tissues.  相似文献   

13.
14.
Sink to source translocation in soybean   总被引:2,自引:1,他引:1       下载免费PDF全文
The possibility that phloem loading may occur in the reproductive sink tissues of soybeans (Glycine max Merr. cv Chippewa 64) was examined. When [14C]sucrose was applied to seed coat tissues from which the developing embryo had been surgically removed, 0.1% to 0.5% of the radioactivity was translocated to the vegetative plant parts. This sink to source translocation was largely unaffected by destroying a band of phloem with steam treatment on the stem above and below the labeled pod. The same steam treatment, however, completely abolished translocation of [14C]sucrose between mature leaves and developing fruits. These results indicate that the movement of nutrients from developing seed coats to the vegetative plant parts occur in the xylem and that phloem loading does not occur in this sink tissue.  相似文献   

15.
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.

Mutations in Bk2L3 result in dwarfed plants with decreased anisotropic cell growth, cellulose deposition, phloem pressure, sucrose export, and carbohydrate hyperaccumulation in mature maize leaves.  相似文献   

16.
The transport of assimilates from source to sink tissues is mediated by the phloem. Along the vascular system the phloem changes its physiological function from loading phloem to transport and unloading phloem. Sucrose carrier proteins have been identified in the transport phloem, but it is unclear whether the physiological role of these transporters is phloem unloading of sucrose or retrieval of apoplasmic sucrose back into the sieve element/companion cell complex. Here, we describe the dynamic expression of the Ricinus communis sucrose carrier RcSCR1 in the hypocotyl at different sink strengths. Our results indicate that phloem unloading in castor bean is not catalysed by the phloem loader RcSCR1. However, this sucrose carrier represents the molecular basis of the sucrose retrieval mechanism along the transport phloem, which is dynamically adjusted to the sink strength. As a consequence, we assume that other release carrier(s) exist in sink tissues, such as the hypocotyl, in R. communis.  相似文献   

17.
18.
P. M. Hayes  J. W. Patrick 《Planta》1985,166(3):371-379
Gibberellic acid (GA3), indole-3-acetic acid (IAA) or kinetin (6N-furfurylaminopurine) applied to the apical regions of decapitated stems of derooted Phaseolus vulgaris plants, promoted 14C-photosynthate transport to the site of hormone application. Hormonal promotion of acropetal photosynthate transport was associated with significant increases in the pool size of free-space sugars at the hormone-treated region of the stem. The hormone-induced increases in the free-space pool size depended on continued phloem transport in the stem stumps while photosynthate leakage from the sink tissues of the stems was unaffected by the hormone treatments. On the basis of these observations, it is concluded that the increases in the pool size of sugars in the stem free-space results from hormonal action on processes that determine rates of sugar unloading from the sieve element-companion cell (se-cc) complexes. Furthermore, since loading of the se-cc complexes in the stem stumps was stimulated by GA3 and IAA and unaffected by kinetin applied at the loading site, hormonal effects on net unloading from the se-cc complexes must be caused by alterations in the efflux component. For winter-grown plants, it was found that predicted increases in sugar transfer through the stem free-space from the se-cc complexes to the sink tissues could account for the observed hormonal stimulation of photosynthate transport. In contrast, for summer-grown plants the higher sugar concentrations in the stem free-space of control plants approached saturation for the sugar-accumulation process. This caused an attenuation of the responsiveness of sugar accumulation by the stem sink tissues to hormone-induced increases in the pool size of sugars in the stem free-space. On this basis it is proposed that the bulk of photosynthates may move radially from the se-cc complexes through the stem symplast of summer-grown plants.  相似文献   

19.
Populus plants were grown in a medium lacking calcium and exposedto 14CO2. In contrast to plants in the complete nutrient medium,the percentage amount of 14C-assimilates increased in the leavesof calcium-deficient plants and decreased in the stem and theroots. When plants were grown without potassium or magnesiumno differences in the amount of 14C-label occurred in comparisonwith plants in the complete nutrient medium. Translocation wasrecorded by microautoradiography. It was observed that considerableamounts of labelled photoassimilates were unloaded from thephloem in the middle part of the stem in plants of the completenutrient medium. In contrast, during calcium starvation 14C-labelwas restricted to the phloem of the stem. In addition, the concentrationsof magnesium and phosphorus showed a remarkable increase instem sieve tubes of calcium-deficient plants. When sieve tubesof source leaves from Populus, barley and maize were comparedwith those of sink leaves, the latter showed higher calciumconcentrations. The results suggest that calcium is a necessaryfactor in the regulation of phloem translocation. Key words: Calcium deficiency, phloem translocation, sieve element loading and unloading, X-ray microanalysis  相似文献   

20.
Sugars produced from photosynthesis in leaves are transported through the phloem tissues within veins and delivered to non-photosynthetic organs, such as roots, stems, flowers, and seeds, to support their growth and/or storage of carbohydrates. However, because the phloem is located internally within the veins, it is difficult to access and to study the dynamics of sugar transport. Radioactive tracers have been extensively used to study vascular transport in plants and have provided great insights into transport dynamics. To better study sucrose partitioning in vivo, a novel radioactive analog of sucrose was synthesized through a completely chemical synthesis route by substituting fluorine-18 (half-life 110 min) at the 6’ position to generate 6’-deoxy-6’[18F]fluorosucrose (18FS). This radiotracer was then used to compare sucrose transport between wild-type maize plants and mutant plants lacking the Sucrose transporter1 (Sut1) gene, which has been shown to function in sucrose phloem loading. Our results demonstrate that 18FS is transported in vivo, with the wild-type plants showing a greater rate of transport down the leaf blade than the sut1 mutant plants. A similar transport pattern was also observed for universally labeled [U-14C]sucrose ([U-14C]suc). Our findings support the proposed sucrose phloem loading function of the Sut1 gene in maize, and additionally demonstrate that the 18FS analog is a valuable, new tool that offers imaging advantages over [U-14C]suc for studying phloem transport in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号