首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrosomeless round-headed spermatozoa from three men were studied under electron microscopy and indirect immunofluorescene microscopy using the anti-calicin antibody that recognizes a basic protein of the sperm perinuclear theca (Longo et al., 1987). Electron microscopy revealed the existence of anomalies of the nuclear envelope, the nuclear matrix underlying the nuclear envelope, and the perinuclear layer. The absence of sperm labeling with the anti-calicin antibody confirmed that the formation of the perinuclear theca was impaired. Data obtained from both mature spermatozoa and ejaculated spermatids suggest that i) round-headed sperm head anomalies result from a failure of differentiation of the sperm-specific skeletal complex related to the nucleus, and ii) the acrosome spreading over the nucleus, the nuclear elongation and the post-acrosomal sheath formation are dependent on such nuclear-perinuclear differentiations. In contrast, chromatin condensation, cytokinesis and some events of the acrosomal shaping appear not to depend on those nuclear-related differentiations. The possible processes allowing the maintenance of the sperm head structures and their subsequent morphogenesis are discussed.  相似文献   

2.
Xu  Peng  Mahamid  Julia  Dombrowski  Marco  Baumeister  Wolfgang  Olins  Ada L.  Olins  Donald E. 《Chromosoma》2021,130(2-3):91-102

“Interphase epichromatin” describes the surface of chromatin located adjacent to the interphase nuclear envelope. It was discovered in 2011 using a bivalent anti-nucleosome antibody (mAb PL2-6), now known to be directed against the nucleosome acidic patch. The molecular structure of interphase epichromatin is unknown, but is thought to be heterochromatic with a high density of “exposed” acidic patches. In the 1960s, transmission electron microscopy of fixed, dehydrated, sectioned, and stained inactive chromatin revealed “unit threads,” frequently organized into parallel arrays at the nuclear envelope, which were interpreted as regular helices with ~ 30-nm center-to-center distance. Also observed in certain cell types, the nuclear envelope forms a “sandwich” around a layer of closely packed unit threads (ELCS, envelope-limited chromatin sheets). Discovery of the nucleosome in 1974 led to revised helical models of chromatin. But these models became very controversial and the existence of in situ 30-nm chromatin fibers has been challenged. Development of cryo-electron microscopy (Cryo-EM) gave hope that in situ chromatin fibers, devoid of artifacts, could be structurally defined. Combining a contrast-enhancing phase plate and cryo-electron tomography (Cryo-ET), it is now possible to visualize chromatin in a “close-to-native” situation. ELCS are particularly interesting to study by Cryo-ET. The chromatin sheet appears to have two layers of ~ 30-nm chromatin fibers arranged in a criss-crossed pattern. The chromatin in ELCS is continuous with adjacent interphase epichromatin. It appears that hydrated ~ 30-nm chromatin fibers are quite rare in most cells, possibly confined to interphase epichromatin at the nuclear envelope.

  相似文献   

3.
The class of nonhistone chromosomal proteins that remains bound to DNA in chromatin in the presence of 2.5 M NaCl-5 M urea has proven refractile to biochemical analysis. In order to study its role in chromatin organization, we have produced monoclonal antibodies that are specific for the HeLa DNA-protein complex that remains after extraction of chromatin with high salt and urea. The antibody-producing clones were identified with an ELISA assay. Of the six clones selected, five were stabilized by limiting dilution. All clones are IgG producers. None cross-react significantly with native DNA, core histones, or the high-mobility group nonhistone proteins. All antibodies are specific for nuclear or juxtanuclear antigens. Indirect immunofluorescence shows that three antibodies, which are nonidentical, stain three different nuclear networks. Available evidence indicates that two of these networks are the nuclear matrix. A fourth antibody reveals structures reminiscent of chromocenters. A fifth antibody, AhNA-1, binds to interphase HeLa chromatin and specifically decorates metaphase chromosomes. AhNA-1 similarly recognizes rat chromosomes. Each of these monoclonal antibodies also reveals a changing pattern of nuclear staining as cells progress through the cell cycle. Presumably, this reflects the rearrangement of the cognate antigens.  相似文献   

4.
Nucleo-cytoplasmic translocation of histone H1 during the HeLa cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

5.
Sister chromatids duplicated in S phase are connected with each other during G(2) and M phase until the onset of anaphase. This chromatid cohesion is essential for correct segregation of genetic material to daughter cells. Recently, understanding of the molecular mechanisms governing chromatid cohesion in yeast has been greatly advanced, whereas these processes in mammalian cells remain unclear. We report here biochemical and cytological analyses of human Rad21, a homologue of the yeast cohesin subunit, Scc1p/Mcd1p. hRad21 is a nuclear phosphorylated protein. Its abundance does not change during the cell cycle, and it becomes hyperyphosphorylated in M phase. Most hRad21 is not associated with chromatin when the nuclear envelope breakdown takes place in prophase. However, a detailed analysis of the spread chromosomes indicated that hRad21 remains associated with prometaphase-like chromosomes along their entire lengths. The mitotic chromatin-bound hRad21 becomes dissociated in a highly regulated manner because hRad21 remains specifically at the centromeres but disappears from the arm regions on metaphase-like chromosomes. Interestingly, hRad21 at the metaphase centromeres appears to be present at the inner pairing domain where the two sister chromatids are supposed to be in intimate contact. These results suggest that hRad21 has a critical role in chromatid cohesion in human mitotic cells.  相似文献   

6.
One hybridoma (AC54), which produces monoclonal antibody (MAb) that recognizes both intermediate filaments (IFs) and nuclear granules in BHK21/C13 cells, and two hybridomas (AC19 and AC36) which produce MAbs that recognize IFs only, were obtained by using a crude actin preparation from chicken gizzard as an antigen. In immunoblotting, both the AC54 and AC19 MAbs reacted with the 52 kD protein (desmin) and some other proteins in gizzard and BHK21/C13 cells. Indirect immunofluorescent microscopy of BHK21/C13 cells showed that the cytoplasmic filaments stained by these MAbs were IFs based on their colchicine-induced whorl formation. The ability of AC54 MAb to recognize IFs was more limited than that of AC19 MAb. The nuclear granules recognized by AC54 MAb were in a different location than the cytoplasmic IFs and sometimes were concentrated in the nucleolus. These results indicate that AC54 MAb is an anti-desmin MAb that reacts with some desmin-related proteins; that it recognizes IFs differently than AC19 MAb, another anti-desmin MAb; and that it recognizes nuclear granules in locations where desmin or desmin-related protein has not yet been reported.  相似文献   

7.
8.
Direct contact of the radiating perinuclear microtubules (MTs) with the nuclear envelope was visualized with an immunogold technique using specific monoclonal tubulin antibody. The possibility that these perinuclear MT arrays are involved in establishing and maintaining nuclear organization during the interphase of cycling cells in maize root meristems was tested using taxol, a MT-stabilizing agent. Taxol not only stabilized all MTs against the action of the MT-disrupters colchicine and oryzalin but also prevented these agents from their usual induction of nuclear enlargement and decondensation of nuclear chromatin. On the contrary, nuclear size decreased and the chromatin became more compact in mitotically cycling cells of the taxol-treated root apices. Moreover, taxol prevented the stimulation, by colchicine and oryzalin, of the onset of the S phase in cells of the quiescent centre and proximal root meristem. Exposure of maize roots to taxol strongly decreased final cell volumes, suggesting that the more condensed nuclear chromatin is less efficient in genome expression and that this accounts for the restriction of cellular growth. All these findings support the hypothesis that MT arrays, radiating from the nuclear surface, are an essential part of an integrated plant ‘cell body’ consisting of nucleus and the MT cytoskeleton, and that they regulate, perhaps via their impact on chromatin condensation and activity, progress through the plant cell cycle.  相似文献   

9.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

10.
Meiosis represents a specialized cell cycle whereby cells undergo two reductive divisions without an intervening S phase. In oocytes, the transition from meiosis I to II is brief, with paired sister chromatids remaining condensed throughout the interkinesis period. This stands in contrast to mitotic divisions where cytokinesis and the return to interphase is always accompanied by chromatin decondensation and nuclear envelope reformation. Because other aspects of M phase exit are normal, we probed the mechanisms that allow for polar body extrusion while retaining chromatin condensation in Spisula solidissima oocytes. If oocytes were activated in the presence of protein synthesis inhibitors, oocytes progressed normally through MI, but arrested in interkinesis with condensed chromatin, phosphorylated histone H3 and a disorganized MII spindle. Neither inhibition of CDK1- nor MAPK activity in arrested oocytes was sufficient to drive chromatin decondensation or nuclear envelope reformation, suggesting that these kinases were not responsible for the maintenance of chromatin condensation. However, inhibition of Aurora B kinase activity resulted in chromatin decondensation, loss of histone H3 phosphorylation and reformation of the nuclear envelope. Inhibition of Aurora B activity following MI also resulted in chromosome segregation defects during MII and blocked polar body formation, consistent with Aurora B’s well-established role in cytokinesis. Together, these results suggest that extended Aurora B activity between meiotic divisions maintains chromatin condensation, thus allowing for the rapid reassembly of the MII spindle and progression through meiosis.  相似文献   

11.
On the basis of morphological features, 10 consecutive structural phases of spermatids were identified in Chara vulgaris spermiogenesis. They were schematically presented. In early and middle spermiogenesis, i.e. during the period preceding formation of fibrillar structure of mature spermatozoid nucleus, a slight remodelling of chromatin, accompanied by proplastid transformation into an amyloplast as well as by development of 2 flagella and a microtubular manchette, is observed. First, condensed chromatin concentrates around the nuclear envelope (phases III-V) and then it transforms into a network-like structure (phase VI). This change in chromatin structure is preceded by nucleolar extrusion to the cytoplasm where nucleoli become degraded (phase IV) and by a dynamic development of rough endoplasmic reticulum (RER) (phase V) which is continuous with the nuclear envelope and with RER of the adjacent spermatids via plasmodesmata. The inner membrane of the nuclear envelope invaginates into the nucleoplasm in which "nuclear reticulum" appears. It all happens during increased 3H-arginine and 3H-lysine incorporation into proteins which are rapidly translocated into the nucleus. In medium-late spermiogenesis (phases VI-VIII), network-like condensed chromatin disappears. Next, the structure of the nucleus changes dramatically. Short, randomly positioned fibrils (phase VII) appear and gradually become longer (phase VIII), thicker (phase IX) and more distinct, lying parallel to the surface of elongating and curling nucleus. Membranes of the nuclear envelope become closer to each other and a distinct dark layer--probably lamin--appears adhering to the inner membrane of the nuclear envelope. Towards the end of spermiogenesis (phase X), very densely packed parallel helices, ca 2 nm in diameter, are visible. The surfaces of flagella and the spermatozoid are covered with diamond-shaped larger and smaller scales, respectively. Helically coiled spermatozoids are liberated from antheridial filament cells through earlier created (phase VIII) "liberation pores" with pads of unknown nature.  相似文献   

12.
In an attempt to express the small (transmembrane) envelope protein p21e of type 1 human T-cell leukemia (lymphotrophic) virus (HTLV-1) exclusive of other viral gene products, we have constructed a recombinant plasmid clone (pMBE-1) in a bovine papillomavirus-derived mammalian expression vector. Mouse C127 cells transfected with the pMBE-1 plasmid expressed the introduced HTLV-1 viral gene(s) as demonstrated by Northern blot and indirect immunofluorescence with natural human antisera. The transfected mouse cells were injected into BALB/c mice, and a monoclonal antibody was recovered which specifically recognizes a 21-kilodalton protein present in HTLV-1 virions, indicating that the pMBE-1 plasmid encodes the small envelope protein.  相似文献   

13.
 Quantitative analyses of cytoplasmic and nuclear organelle movements in living interphase cells at defined stages of differentiation are few. By phase contrast videomicroscopy and digital imaging techniques, we have traced the path of the chromatoid body (CB) and analysed its rapidly changing positions in relation to the nuclear envelope, Golgi complex and nuclear pale chromatin areas in living early spermatids of the rat. The CB had intimate interactions with the nuclear envelope and moved both in parallel and perpendicular fashion in relation to it. It had successive short contacts with the Golgi complex and nuclear pale chromatin areas. It was also seen to scan between two pale chromatin areas and it had pinocytosis-like transient engulfments during interactions with the pale chromatin. In ultrastructural analysis of snap-frozen preparations, the CB had a large contact area with the nuclear envelope with several intermediate organelles that may be involved in nucleocytoplasmic material transport. It is evident that quantitative image analysis of living cells is a powerful guide for ultrastructural analyses. The snap-freezing technique gives new possibilities for studies of structures that are sensitive to conventional fixation procedures. Accepted: 23 January 1997  相似文献   

14.
Heterochromatin, a type of condensed DNA in eukaryotic cells, has two main categories: Constitutive heterochromatin, which contains H3K9 methylation, and facultative heterochromatin, which contains H3K27 methylation. Methylated H3K9 and H3K27 serve as docking sites for chromodomain-containing proteins that compact chromatin. M33 (also known as CBX2) is a chromodomain-containing protein that binds H3K27me3 and compacts chromatin in vitro. However, whether M33 mediates chromatin compaction in cellulo remains unknown. Here we show that M33 compacts chromatin into DAPI-intense heterochromatin domains in cells. The formation of these heterochromatin domains requires H3K27me3, which recruits M33 to form nuclear bodies. G9a and SUV39H1 are sequentially recruited into M33 nuclear bodies to create H3K9 methylated chromatin in a process that is independent of HP1α. Finally, M33 decreases progerin-induced nuclear envelope disruption caused by loss of heterochromatin. Our findings demonstrate that M33 mediates the formation of condensed chromatin by forming nuclear bodies containing both H3K27me3 and H3K9me3. Our model of M33-dependent chromatin condensation suggests H3K27 methylation corroborates with H3K9 methylation during the formation of facultative heterochromatin and provides the theoretical basis for developing novel therapies to treat heterochromatin-related diseases.  相似文献   

15.
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab E2-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS--albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small non-nuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex.  相似文献   

16.
Summary Synchronously dividing nuclei of the antheridial filaments ofChara vulgaris at the 32-celled stage have different structure depending on the period of interphase.During S phase which begins as early as at the start of telophase (coincidently with the nuclear envelope formation and chromosome decondensation) one can observe a gradual reduction in the content of condensed chromatin, having the appearance of an indistinct network. During the middle S period the area of condensed chromatin decreases to the lowest level of about 29% of nuclear profile and the nuclear envelope becomes folded. At the end of S phase the condensed chromatin forms a more distinct and thicker reticulum which covers an area of about 52%.During the early G2 phase, the area occupied by the condensed chromatin was about 41% and it was found to assume the shape of large and iregular clusters localized mainly near the nucleoli. The reticulate form of chromatin, characteristic of the S period, disappears almost completely. During the next period of interphase the condensed chromatin disperses considerably and covers now 24% of the area. At the end of the G2 phase the condensed chromatin reappears and transforms into chromosomes. Then the condensed chromatin removes from the nuclear envelope.This work was supported by the Polish Academy of Sciences within the project 09.7.3.1.4.  相似文献   

17.
At the end of mitosis membrane vesicles are targeted to the surface of chromatin and fuse to form a continuous nuclear envelope. To investigate the molecular mechanisms underlying these steps in nuclear envelope assembly, we have developed a defined cell-free system in which the binding and fusion steps in nuclear envelope assembly can be examined separately. We have found that extensively boiled Xenopus egg extracts efficiently promote the decondensation of demembranated Xenopus sperm chromatin. When isolated membranes are added to this decondensed chromatin a specific subfraction of membrane vesicles (approximately 70 nM in diameter) bind to the chromatin, but these vesicles do not fuse to each other. Vesicle binding is independent of ATP and insensitive to N-ethylmalamide. Quantitative analysis of these sites by EM suggests that there is at least one vesicle binding site per 100 kb of chromosomal DNA. We show by tryptic digestion that vesicle-chromatin association requires proteins on both the vesicle and on the chromatin. In addition, we show that the vesicles bound under these conditions will fuse into an intact nuclear envelope when incubated with the soluble fraction of a Xenopus egg nuclear assembly extract. With respect to vesicle fusion, we have found that vesicles prebound to chromatin will fuse to each other when ATP and GTP are present in the boiled extract. These results indicate that nuclear envelope assembly is mediated by a subset of approximately 70-nM-diam vesicles which bind to chromatin sites spaced 100 kb apart and that fusion of these vesicles is regulated by membrane-associated GTP-binding proteins.  相似文献   

18.
We studied the fine structural organization of the meristematic nucleus in roots of Lycopesicon esculentum (tomato) using ultracytochemical and immunocytochemical approaches. The nucleus has a non-reticulate (i.e. low DNA content) structure whose supramolecular organization differs in some respects from that in reticulate nuclei, principally in the organization of the chromocentres associated with the nuclear envelope, with which centromeric structures appear to be associated. The main difference at the nucleolar level is found in the fibrillar centres, which have a low amount of DNA labelling and in which inclusions of condensed chromatin are present only very rarely. The distribution of nucleolar DNA amongst the nucleolar compartments is similar to that in reticulate nucleoli as demonstrated using an anti-DNA monoclonal antibody. Tomato nuclei have nucleolus-associated bodies or karyosomes, like other plant species with a low DNA content and non-reticulate nuclear organization. The nuclear ribonucleoprotein structures in the inter- and perichromatin regions, namely inter- and perichromatin fibrils and granules, show similar ultrastructural and cytochemical characteristics in both types of nuclei.Abbreviations NAC nucleolus associated chromatin - CES centromeric structures - NOR nucleolar organizing region - NAB nucleolus associated body - IG interchromatin granules - RNP ribonucleoprotein - Mab monoclonal antibody by M.F. Trendelenburg  相似文献   

19.
The ultrastructural localization of a proteasomal antigen in human spermatozoa was studied by means of immunolabeling with the MPC21 monoclonal antibody and secondary gold labeled antibody with 1.4 nm gold particles in combination with silver enhancement reaction using pre-embedding technique. The labeling was found in the acrosomal and postacrosomal regions, in the connecting-piece (neck) and, in some cases, in the middle-piece and also in the residual bodies. There was no significant reaction in condensed chromatin. In some abnormal forms of spermatozoa, in which the chromatin was not well condensed, the labeling in nuclei was present. The nuclear vacuoles with looser chromatin were usually strongly labeled. The nuclei of cells representing different stages of spermatogenesis, that were present in semen samples, were also labeled.  相似文献   

20.
Identification of novel M phase phosphoproteins by expression cloning.   总被引:17,自引:3,他引:14       下载免费PDF全文
Using an expression cloning technique, we isolated cDNAs for eight M phase phosphoproteins (MPPs 4-11). We then used affinity-purified antibodies to fusion proteins to characterize the intracellular localization and some biochemical properties of these proteins and two others that we identified previously (MPPs 1-2). Each antibody immunoprecipitated one or two protein species of a characteristic size ranging from 17,000 to 220,000 Da. Each MPP, when immunoprecipitated from lysates of M phase cells, was reactive with MPM2, a monoclonal antibody that recognizes a group of related M phase phosphorylation sites, including F-phosphoT-P-L-Q. This reactivity indicated that all the MPPS encoded genuine M phase phosphoproteins. When antibodies to the MPPS were used for immunofluorescence microscopy, each anti-MPP gave a characteristic pattern of localization. In interphase, several of the MPPs were nuclear proteins, whereas others were cytoplasmic or distributed throughout the cell. Three MPPS were strikingly localized to interphase structures: MPP7 to centers of DNA replication, MPP9 to the Golgi complex, and MPP10 to nucleoli. In mitosis, most of the MPPs were distributed throughout the cells. Further studies of the 10 MPPs, most of which are previously undescribed, are expected to provide new understandings of the process of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号