首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

2.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

3.
Cellotriosyl and cellotetraosyl residues, linked by single (1→3)-β-linkages, account for more than 90% of the 40°C water-soluble (1→3), (1→4)-β-d-glucan from barley flour. We have analysed their sequence dependence by treating the polymer as a two-state Markov chain with stationary distribution. Quantitation of the penultimate oligosaccharides released during hydrolysis of the (1→3), (1→4)-β-d-glucan with (1→3), (1→4)-β-d-glucan 4-glucanohydrolase (EC 3.2.1.73) by analytical gel filtration chromatography enabled the relative abundance of two adjacent cellotriosyl, two adjacent cellotetraosyl and adjacent cellotetraosyl/cellotriosyl residues to be estimated and the sequence dependence to be evaluated.Within the theoretical and practical constraints of the method it is concluded that the cellotriosyl and cellotetraosyl residues are arranged in an essentially independent (random) fashion. Thus, any mechanism proposed for the biosynthesis of the molecule should explain this apparently random distribution of cellotriosyl and cellotetraosyl residues as well as the presence, in relatively low frequency, of blocks of up to 10 or more adjacent (1→4)-linkages.  相似文献   

4.
Optically pure 2-acetamido-2-deoxy-3-O-α-L-fucopyranosyl-α-D-glucose was synthesized by the Koenigs-Knorr reaction of 2-O-benzyl-3,4-di-O-p-nitrobenzoyl-α-L-fucopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-D-glucopyrainoside. Reaction of 2,3,4-tri-O-acetyl-α-L-fucopyranosyl bromide gave the β-L-fucopyranosyl anomer. In contrast to the stereospecificity shown in this reaction by these two bromides, 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide afforded a mixture of α-L and β-L anomers in almost equimolar proportions. The disaccharides synthesized were crystallized and characterized, and their optical purity demonstrated by g.l.c. of the per(trimethylsilyl) ethers of the corresponding alditols.  相似文献   

5.
The effect of phenols on the hydrolysis of substituted phenyl β-d-gluco- and β-d-xylo-pyranosides by β-d-glucosidase from Stachybotrys atra has been investigated. Depending on the glycon part of the substrate and on the phenol substituent, the hydrolysis is either inhibited or activated. With aryl β-d-xylopyranosides, transfer of the xylosyl residue to the phenol, with the formation of new phenyl β-d-xylopyranosides, is observed. With aryl β-d-glucopyranosides, such transfer does not occur when phenols are used as acceptors, but it does occur with anilines. A two-step mechanism, in which the first step is partially reversible, is proposed to explain these observations. A qualitative analysis of the various factors determining the overall effect of the phenol is given.  相似文献   

6.
The effect of a "bisecting" 2-acetamido-2-deoxy-beta-D-glucopyranosyl group, linked (1----4) to the beta-D-mannopyranosyl group of asparagine-linked complex and hybrid oligosaccharides, on the binding of [14C]acetylated glycopeptides to columns of immobilized concanavalin A (Con A), Phaseolus vulgaris erythroagglutinin (E-PHA), and Ricinus communis agglutinin-120 (RCA-120) was investigated. The presence of this "bisecting" GlcNAc group caused significant inhibition of the binding to ConA-agarose of biantennary complex glycopeptides in which the two branches are terminated at their nonreducing ends by two GlcNAc groups, or by a Gal and a GlcNAc group, or by two Gal groups, or by a Man and a GlcNAc group. Binding of biantennary, complex glycopeptides to E-PHA-agarose required a "bisecting" GlcNAc group, a Gal group at the nonreducing terminus of the alpha-D-Man-p-(1----6) branch, and a terminal or internal GlcNAc residue linked beta-(1----2) to the alpha-D-Manp-(1----3) branch. Binding to RCA-120-agarose occurred only when at least one nonreducing terminal Gal group was present, and increased as the proportion of terminal Gal groups increased; the presence of a "bisecting" GlcNAc group caused either enhancement or inhibition of these binding patterns. It is concluded that a "bisecting" GlcNAc group affects the binding of glycopeptides to all three lectin columns.  相似文献   

7.
A large panel of fungal β-N-acetylhexosaminidases was tested for the regioselectivity of the β-GlcNAc transfer onto galacto-type acceptors ( -galactose, lactose, 2-acetamido-2-deoxy- -galactopyranose). A unique, non-reducing disaccharide β- -GlcpNAc-(1→1)-β- -Galp and trisaccharides β- -GlcpNAc-(1→4)-β- -GlcpNAc-(1→1)-β- -Galp, β- -Galp-(1→4)-β- -Glcp-(1→1)-β- -GlcpNAc and β- -Galp-(1→4)-α- -Glcp-(1→1)-β- -GlcpNAc were synthesised under the catalysis of the β-N-acetylhexosaminidase from the Aspergillus flavofurcatis CCF 3061 with -galactose and lactose as acceptors. The use of 2-acetamido-2-deoxy- -galactopyranose as an acceptor with the β-N-acetylhexosaminidases from A. flavofurcatis CCF 3061, A. oryzae CCF 1066 and A. tamarii CCF 1665 afforded only β- -GlcpNAc-(1→6)- -GalpNAc.  相似文献   

8.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

9.
Using the imidate procedure, 2,3,4,6-tetra-O-benzyl-1-O-(N-methylacetimidoyl)-β-d-galactopyranose was condensed with various monosaccharides to provide, in good yield and with high stereoselectivity, α-linked disaccharides.  相似文献   

10.
An N-acetyl-β-d-hexosaminidase has been purified from primary wheat leaves (Triticum aestivum L.) by freeze-thawing, (NH4)2SO4 precipitation, methanol precipitation, gel filtration, cation exchange chromatography and affinity chromatography on concanavalin A-Sepharose. The activity of the purified preparations could be stabilised by addition of Triton X-100 and the enzyme was stored at -20°C without significant loss of activity. The enzyme hydrolysed pNP-β-d-GlcNAc (optimum pH 5.2, Km 0.29 mM, Vmax 2.56 μkat mg−1) and pNP-β-d-GalNAc (optimum pH 4.4, Km 0.27 mM, Vmax 2.50 μkat mg−1). Five major isozymes were identified, with isoelectric points in the range 5.13–5.36. All five isozymes possessed both N-acety-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activity. Inhibition studies and mixed substrate analysis suggested that both substrates are catalysed by the same active site. Both activities were inhibited by GlcNAc, 2-acetamido-2-deoxygluconolactone, GalNAc and the ions of mercury, silver and copper. The Kis for inhibition of N-acetyl-β-d-glucosaminidase activity were: GlcNAc (15.3 mM) and GalNAc (3.4mM). For inhibition of N-acety-β-d-galactosaminidase activity the corresponding values were: GlcNAc (18.2 mM) and GalNac (2.5 mM). The enzyme was considerably less active at releasing pNP from pNP-β-d-(GlcNAc)2 and pNP-β-d-(GlcNAc)3 than from pNP-β-d-GlcNAc. The ability of the N-acetyl-β-d-hexosaminidase to relase GlcNAc from chitin oligomers (GlcNAc)2 (optimum pH 5.0) and (GlcNAc)3−6 (optimum pH 4.4) was also low. Analysis of the reaction products revealed that the initial products from the hydrolysis of (GlcNAc)n were predominantly (GlcNAc)n−1 and GlcNAc.  相似文献   

11.
J R Brisson  J P Carver 《Biochemistry》1983,22(15):3671-3680
The solution conformation is presented for representatives of each of the major classes of asparaginyl oligosaccharides. In this report the conformation of alpha(1-3)-, alpha(1-2)-, beta(1-2)-, and beta(1-4)-linked units is described. The conformational properties of these glycopeptides were determined by high-resolution 1H nuclear magnetic resonance in conjunction with potential energy calculations. The NMR parameters that were used in this analysis were chemical shifts and nuclear Overhauser enhancements. Potential energy calculations were used to evaluate the preferred conformers available for the different linkages in glycopeptides and to draw conclusions about the behavior in solution of these molecules. It was found that the linkage conformation of the Man alpha 1-3 residues was not affected by substitution either at the 2-position by alpha Man or beta GlcNAc or at the 4-position by beta GlcNAc or by the presence of a bisecting GlcNAc on the adjacent beta Man residue.  相似文献   

12.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

13.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

14.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

15.
The crystal structures of (1→3)-α-d-glucan triacetates were studied by X-ray diffraction measurements on fibre diagrams. The oriented films annealed in water at high temperature were of higher crystallinity and occurred as two crystalline polymorphs (GTA I and GTA II) depending on the samples and also the annealing temperature. All reflections in GTA I were indexed with a pseudo-orthorhombic unit cell with a = 1·753, b = 3·018 and c(fibre axis) = 1·205 nm. From the fibre repeat data coupled with the density data and the presence of only the (003) reflection on the meridian, an extended three-fold helical structure was proposed. Although some reflections in GTA II split from the layer lines, the basic unit cell was a monoclinic system with a = 1·685, b = 3·878, c (fibre axis) = 1·210 nm and γ = 112·2°. A similar three-fold structure to GTA I was proposed from the almost identical fibre repeat and the conformational analysis on (1→3)-α-d-glucan. It was concluded that, on acetylation, the d-glucan structure changed from the fully extended two-fold helix to the extended three-fold accompanied by some extent of chain shrinking.  相似文献   

16.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

17.
Peanut (Arachis hypogaea) agglutinin (PNA) is extensively used as tumour marker as it strongly recognises the cancer specific T antigen (Galβ1→3GalNAc-), but not its sialylated version. However, an additional specificity towards Galβ1→4GlcNAc (LacNAc), which is not tumour specific, had been attributed to PNA. For correct interpretation of lectin histochemical results we examined PNA sugar specificity using naturally occurring or semi-synthetic glycoproteins, matrix-immobilised galactosides and lectin-binding tissue glycoproteins, rather than mono- or disaccharides as ligands. Dot-blots, transfer blots or polystyrene plate coatings of the soluble glycoconjugates were probed with horse-radish peroxidase (HRP) conjugates of PNA and other lectins of known specificity. Modifications of PNA-binding glycoproteins, including selective removal of O-linked oligosaccharides and treatment with glycosidases revealed that Galβ1→4GlcNAc (LacNAc) was ineffective while terminal α-linked galactose (TAG) as well as exposed T antigen (Galβ1→3 GalNAc-) was excellent as sugar moiety in glycoproteins for their recognition by PNA. When immobilised, melibiose was superior to lactose in PNA binding. Results were confirmed using TAG-specific human serum anti-α-galactoside antibody.  相似文献   

18.
13C-N.m.r. spectra of several d-glucans, recorded at 100 MHz, have afforded information about structural detail not previously accessible at lower frequencies. Spectra of (1→4)- and (1→3)-linked β-d-glucans of oats, barley, and lichenan of Iceland moss demonstrate the presence, in each, of three, non-equivalent, 4-O-substituted residues, that the ratio of these to 3-O-substituted residues averages 2.4–2.5, and hence that the patterns of repeating sequences in the three polymers are essentially the same. A comparison of wheat amylopectin with a minor, amylopectin-like fraction of wheat starch indicates that they are strictly analogous in basic structure, and differ only in that the average length of branches in the minor fraction is 20–25% shorter. By combining the advantages of high-field operation with the use of dimethyl sulfoxide as solvent, a large number of distinctive resonances have been observed, representing end-units, branch-points, and residues adjacent to branch-points. Accordingly, these signals are even more prominent in the spectrum of glycogen, reflecting the higher incidence of branching in this polymer. At 100 MHz, the excellent resolution and sensitivity afforded constitute a potent basis for assessing the purity of polysaccharide preparations, as illustrated with wheat amylose and barley β-d-glucans.  相似文献   

19.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

20.
Four different α-d-glucosyltransferases (GTF) have been obtained from culture filtrates of Streptococcus sobrinus strains grown in the chemostat at pH 6·5 in complex medium supplemented with Tween 80. Three of the enzymes, GTF-S1, GTF-S3 and GTF-S4, converted sucrose into soluble glucans. Their limit of hydrolysis with endodextranase, the proportion of linear to branched oligosaccharides among the end products of enzymic degradation, and methylation analysis, all supported the view that the glucans were dextrans. The S1-dextrans were highly branched (32% of α-(1 → 3)-branch points), S3-dextrans were linear, and the branching of S4-dextrans was intermediate in value (9%). The enzymes that catalyze the synthesis of three such diverse dextrans were thus proved to be three different GTF, each with a characteristic specificity. Conditions of growth in the chemostat could be varied to provide maximum yields of either GTF-S1, -S3 or -S4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号