首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
对杆状病毒BactoBac表达系统的转座质粒pFastbac1进行改造,即在其多角体蛋白启动子下游插入谷胱苷肽S转移酶(glutathioneStransferase, GST)基因,构建GST融合表达转座质粒pFGST。通过转座和转染Sf9细胞,证实该系统能高水平表达GST。采用PCR方法从pMTgp51质粒中扩增截去N端信号肽序列的猪繁殖与呼吸综合征病毒(PRRSV)YA株ORF5基因,并将截短的ORF5基因片段克隆到pFGST中,使之与GST融合,构建的重组转座质粒pFGST53转染DH10Bac,提取大分子Bacmid DNA,转染Sf9细胞,获得能表达融合蛋白的高滴度重组病毒rvGST53。rvGST53感染Sf9细胞,SDSPAGE和Western印迹分析表明:与GST融合的ORF5基因在Sf9细胞中获得高效表达,表达产物分子量为45kD,能与抗PRRSV E蛋白单克隆抗体发生特异性反应。将表达产物免疫小白鼠,经间接免疫荧光检测,免疫血清能使PRRSV YA株感染的MARC145细胞呈较强的荧光着色,证实表达的融合蛋白具有良好的免疫原性。  相似文献   

2.
猪繁殖与呼吸综合征是由此综合征病毒PRRSV引起严重危害养猪业的一种新型传染病。其特征为母猪流产、死胎、木乃伊、弱仔等繁殖障碍、仔猪呼吸道症状明显及其高死亡率。此病目前进行大规模防治比较困难 ,但在我国又普遍存在。经临床和血清学调查 ,PRRSV属动脉类病毒科 ,为单股正链RNA病毒 ,其基因组大小为 15kb ,包括 8个开放阅读框架 ,可编码 6种结构蛋白和两种非结构蛋白。其中ORF5编码病毒的糖基化囊膜蛋白又称E蛋白和 gp5是主要的结构蛋白 ,有许多功能 ,并能参与细胞免疫和体液免疫 ,还可诱导细胞凋亡 ,同时有中和作用 ,并与 gp5…  相似文献   

3.
4.
通过PCR方法从重组质粒pGEM-ORF5扩增得到缺失N端疏水序列的基因片段dORF5(deleting ORF5)。将dORF5克隆至原核高效表达载体pGEX-4T-1,在E.coliRosetta细胞中成功表达了重组蛋白GST-dORF5。用Western blotting鉴定表达蛋白,证明dORF5基因得到表达。本试验得到的重组蛋白,为进一步研究PRRS病毒结构蛋白的结构和功能奠定了基础。  相似文献   

5.
6.
Lu Q  Wang XL  Song YH  Li YF  Bai J  Jiang P 《病毒学报》2011,27(6):542-548
猪繁殖与呼吸综合征病毒(PRRSV)是目前引起国内外养猪业严重经济损失的重要病原之一,病毒基因和毒力变异较大。PRRSV NT0801株分离自我国发病猪群,毒力较强,但NSP2基因不存在高致病性PRRSV 30个氨基酸的缺失。为了进一步阐明该分离株的分子特征,本研究对该毒株全基因序列进行了测定和分析,结果该毒株基因组全长15 439 bp,其中包含29 nt Poly(A)。与高致病性PRRSV毒株JXA1比较,核酸序列同源性为96.7%,推导的GP3和GP5氨基酸序列同源性分别为97.2%和98.5%,但NSP2基因无30个氨基酸的缺失;与传统型毒株ch-1a比较,推导的GP3和GP5氨基酸序列同源性分别为92.9%和91.5%;基因进化树分析结果显示其介于高致病性和传统PRRSV毒株之间。与其它不同毒力PRRSV分离株基因序列比较,未发现明显重组信号。不同毒力毒株氨基酸残基比对分析结果显示,15个位点潜在毒力相关氨基酸残基中,该毒株有9个与高致病性PRRSV毒株一致,3个与高致病性PRRSV毒株不同,但与传统型和JXA1疫苗株相同,1个位点只与JXA1疫苗株相同,2个与其它毒株都不相同。表明该分离株与高致病性PRRSV密切相关,PRRSV流行毒株变异与基因突变有关,从而为该病毒毒力基因定位研究奠定了基础。  相似文献   

7.
利用单管RT-PCR方法扩增猪生殖和呼吸综合征病毒(PRRSV)分离株B13株包括ORF7基因的片段,并对其序列进行了测定,结果PRRSV分离株B13ORF7基因长度为384bp,编码128个氨基酸组成的15kD蛋白。与已发表的PRRSV LV株、VR-2332株进行同源性比较,发现核苷酸同源性分别为99.2%、59.4%;氨基酸同源性分别为98.4%、54.7%。。表明PRRSV分离株B13在基因结构上可能与LV株同属于欧洲亚群。同时构建了重组转移载体质粒pAcGHLT-B-ORF7,且该重组转移载体质粒与线性化苜蓿丫纹夜蛾核型多角体病毒(AcMNPV-SVI^-G)基因组DNA(baculo gold linearized baculovirus DNA)共转染草地夜蛾(Spodoptcra frugiperda,Sf9)细胞,得到重组病毒AcMNPV-OCC^--GST-6xHis-ORF7。在感染了重组病毒的Sf9细胞中检测到分子量为46kD的ORF7基因的GST融合蛋白表达产物,能被猪抗PRRSVB13株多克隆血清所特异识别。此结果为PRRS新型诊断抗原的研制奠定了基础。  相似文献   

8.
【背景】猪繁殖和呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)可以造成怀孕母猪的繁殖障碍及仔猪的呼吸系统疾病,近年来,NADC30-like谱系PRRSV已成为国内的优势流行毒株。【目的】研制针对NADC30-like谱系PRRSV的病毒样颗粒(virus-like particle,VLP)疫苗。【方法】将PRRSV NADC30-like毒株编码GP5蛋白开放阅读框5(open reading frame 5,ORF5)、ORF6(编码M蛋白)分别连接至pFastBacTMDual载体P10和PH启动子下游多克隆位点,获得穿梭质粒pFB-30-ORF5及pFB-30-ORF6,酶切鉴定后,将ORF6基因插入到穿梭质粒pFB-30-ORF5 PH启动子下游,构建穿梭质粒pFB-30-ORF5-OPF6。将上述3种穿梭质粒分别转化大肠杆菌DH10Bac感受态细胞,通过蓝白斑筛选及PCR鉴定重组杆粒。再将获得的重组杆粒转染至SF9昆虫细胞,发现细胞病变后收获病毒液,继续盲传3代,在透射电镜下观察是否有病毒样颗粒。用第3代病毒液感染SF9细胞后,分别用GP5蛋白、His-tag、Flag-tag单克隆抗体作为一抗,通过免疫电镜、间接免疫荧光(indirect immunofluorescence assay,IFA)、Western blotting鉴定重组蛋白。【结果】成功构建了3种穿梭质粒pFB-30-ORF5、pFB-30-ORF6和pFB-30-ORF5-OPF6,酶切鉴定正确。通过蓝白斑筛选及PCR验证后获得重组杆粒,分别命名为Bacmind-30-ORF5、Bacmind-30-ORF6和Bacmind-30-ORF5-ORF6。重组杆粒感染SF9细胞120h时出现明显的细胞病变,收获病毒液后,在透射电子显微镜可观察到大小为50nm左右呈现球形结构的VLPs。免疫电镜可以观察到胶体金颗粒结合在VLPs周围;IFA结果显示实验组均出现了明显绿色的特异性荧光灶;Western blotting结果表明,3种VLPs均出现特异性条带,并与预期大小一致。【结论】制备了3种NADC30-like谱系PRRSV的病毒样颗粒,为针对PRRSV新谱系流行株疫苗的研发奠定了基础。  相似文献   

9.
利用单管RT-PCR方法扩增猪生殖和呼吸综合征病毒(PRRSV)分离株B  相似文献   

10.
为了实现猪繁殖与呼吸综合征病毒(PRRSV)的ORF5和ORF6基因在同一质粒中分别表达各自编码的蛋白,发挥E蛋白的病毒中和优势和M蛋白的细胞免疫优势,将构建成功的pIRES-ORF5/ORF6转移载体用脂质体法转入稳定表达的细胞CHO,经G418加压筛选获得具稳定表达的细胞株。以RT-PCR、SDS-PAGE、Western blot和间接免疫荧光检测目的蛋白的表达情况。结果表明:RT-PCR检测到两种目的基因的转录;SDS-PAGE和West-ern blot检测到同时表达的两种目的蛋白;间接免疫荧光检测到目的蛋白得到表达。  相似文献   

11.
The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49) and one clinical (SD9) isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in “Related to phage, transposon or plasmid” and “Secreted factors” categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes) than in isolates P37 (24 genes), P47 (16 genes) and P49 (21 genes). CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.  相似文献   

12.
Two novel paramyxoviruses, 81-19252 (Texas81) and 92-7783 (ISU92), isolated from the brains of pigs in the United States in the 1980s and 1990s, were characterized. The complete genome of Texas81 virus was 15,456 nucleotides (nt) in length, that of ISU92 was 15,480 nt, and both genomes consisted of six nonoverlapping genes, predicted to encode nine proteins, with conserved and complementary 3′ leader and 5′ trailer regions and conserved gene starts, gene stops, and trinucleotide intergenic sequences similar to those in paramyxoviruses. The corresponding genes from these two viruses were similar in length, except for the F genes, of which the ISU92 form had an additional 24-nt U-rich 3′ untranslated region. The P genes of swine viruses were predicted to produce V and D mRNAs by RNA editing (one to four G insertions in Texas81 and one to nine G insertions in ISU92) or C mRNA by alternative translation initiation. Sequence-specific features related to virus replication and host-specific amino acid signatures indicated that these viruses originated from bovine parainfluenzavirus 3 (bPIV3). Phylogenetic analysis of individual genes suggested that these viruses are novel members of the genus Respirovirus of the Paramyxovirinae subfamily and may be grouped into two subgenotypes of genotype A of bPIV3. Our comprehensive studies revealed that these swine PIV3 are variants of bPIV3 and were possibly transferred from cattle to pigs but failed to establish an active enzootic state. These two viruses were mildly pathogenic to conventionally reared pigs, and results from a limited enzyme-linked immunosorbent assay-based serosurvey of swine farms in Minnesota and Iowa in 2007 and 2008 were negative.Outbreaks of infections with many novel paramyxoviruses causing catastrophic illnesses have been reported all over the world in the last few decades. A large number of diverse host species have been involved, including avian, porcine, canine, bovine, equine, ovine, human, reptilian, and aquatic species (22, 29, 40, 50, 51). Cases of cross-species transmission and pathogen jumping to humans were also reported (10, 20), demonstrating the value of characterizing new animal pathogens, even if their pathogenic potential is currently unknown. Prior to the 1990s, only La Piedad Michoacán paramyxovirus had been well studied as a neurotropic paramyxovirus isolated from pigs. Many paramyxovirus porcine pathogens have been reported since the 1950s in numerous countries, including Japan (55), Canada (18), and Israel (32), as well as the United States (25, 32). There was also a case of concurrent infection with a porcine reproductive and respiratory syndrome virus and a paramyxovirus which was subsequently named SER virus (70) in Germany in the 1990s (28). Four bat-associated paramyxoviruses were reported to cause disease in animals and humans in 1994 (72). Hendra virus and Nipah virus, which caused severe respiratory disease and death in horses and their trainer and severe febrile encephalitis and death in pigs and farmers, respectively, have been classified as members of the genus Henipavirus in the subfamily Paramyxovirinae (7, 9, 20, 30, 48). Some recently isolated viruses, such as Menangle virus (55), Tupaia paramyxovirus (69), Tioman virus (11), Mossman virus (47), J-virus (31, 33), Beilong virus (42), Mapuera virus (34), Tursiops truncatus parainfluenzavirus 1 (PIV1), isolated from bottlenose dolphins (50), and Atlantic salmon paramyxovirus (51), remain unclassified below the subfamily level. All members of the subfamily Paramyxovirinae have six genes in the following order: 3′-N-P-M-F-A-L-5′, where N, P, M, F, A, and L indicate the genes for the nucleocapsid protein, the phosphoprotein, and the matrix, fusion, attachment, and large polymerase proteins, respectively (40).Recently, we reported the antigenic and molecular characterization of glycoprotein genes from two novel swine PIV3 (sPIV3) isolates from the brains of pigs that experienced respiratory and central nervous system disease (57). These two sPIV3 strains were antigenically and genetically very closely related to bovine PIV3 (bPIV3) in the genus Respirovirus (57). However, the pathogenicity of these sPIV3 strains in conventionally reared pigs and the complete genome sequences of these isolates are presently unknown.In bovines, bPIV3 infection results in asymptomatic to severe respiratory disease, but no neurological disease has been reported (16). Limited sequence polymorphism among the bPIV3 strains was detected previously (12, 66). Recently, after an analysis of Australian isolates of bPIV3, two distinct genotypes of bPIV3, A and B, were proposed (29). In this study, we have performed a complete genome sequence analysis of these swine isolates and determined their pathogenicity in conventionally reared pigs. Our analysis indicated that there are two distinct genetic groupings discernible within genotype A, represented by bPIV3 shipping fever strain (bPIV3-SF)-like and bPIV3 strain 910N (bPIV3-910N)-like viruses, with one swine isolate in each of these groups. Several amino acid residues that may reflect the minor population variations in the new host due to cross-species infection were identified. But both swine viruses induced a very mild respiratory illness without any neurological signs in young piglets, suggesting that coinfection with other infectious agents or the presence of other environmental factors may be required to precipitate clinical disease.  相似文献   

13.
14.
Toxoplasma gondii, an obligate intracellular protozoan parasite of the phylum Apicomplexa, can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals. The aim of this study was to investigate whether superoxide dismutase (SOD) of T. gondii can be used as a new marker for genetic study or a potential vaccine candidate. The partial genome region of the SOD gene was amplified and sequenced from 10 different T. gondii isolates from different parts of the world, and all the sequences were examined by PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results showed that partial SOD gene sequences ranged from 1,702 bp to 1,712 bp and A + T contents varied from 50.1% to 51.1% among all examined isolates. Sequence alignment analysis identified total 43 variable nucleotide positions, and these results showed that 97.5% sequence similarity of SOD gene among all examined isolates. Phylogenetic analysis revealed that these SOD sequences were not an effective molecular marker for differential identification of T. gondii strains. The research demonstrated existence of low sequence variation in the SOD gene among T. gondii strains of different genotypes from different hosts and geographical regions.  相似文献   

15.
Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1–4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups.  相似文献   

16.
Escherichia coli is recognized as one of the most abundant avian bacterial pathogens. In this study, we report the sequencing by the traditional Sanger method of ECBP1 and ECBP2: bacteriophages that infected two different E. coli strains which might be used as therapeutic agents in combination with alternative antibiotics.  相似文献   

17.
Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance.  相似文献   

18.
Virus particles of approximately 740–760 nm in length and 13 nm in diameter were observed from a diseased Nicotiana tabacum (tobacco) plant in Sichuan Province, China. The complete genomic sequence of the virus isolate XC1 was determined to contain 9659 nucleotides without 3′ terminal poly(A) tail. XC1 has a genome typical of members of the genus Potyvirus, encoding a large polyprotein of 3075 amino acids. Putative proteolytic cleavage sites and a number of well characterized functional motifs were identified by sequence comparisons with those of known potyviruses. Sequence comparison revealed that XC1 shared the highest level of nucleotide sequence identity (76.5%) with Wild tomato mosaic virus (WTMV). Phylogenetic analysis showed that XC1 was closely related to the WTMV Guangdong isolate with an identity of 94.3% between CP gene sequence of the two viruses. We thus named XC1 WTMV‐XC‐1 as a novel isolate of WTMV. The full sequence of WTMV‐XC‐1 may serve as a basis for future investigations on the gene diversity of WTMV.  相似文献   

19.
We reported the complete genome sequence of an H5N5 avian influenza virus (AIV) that was first isolated from duck in central China in 2010. Genomic sequence and phylogenetic analyses showed that this virus was a recombinant between H5N1 AIV circulated in southeastern Asia and an N5 subtype influenza virus. These data are beneficial for investigating the epidemiology and ecology of AIVs in central China.  相似文献   

20.
The protein sequence of ATP/CTP:tRNA nucleotidyltransferase (cca) from Sulfolobus shibatae was used to search open reading frames in the genome of Methanococcus jannaschii. Translations of two unidentified open reading frames showed significant sequence similarity to portions of the Sulfolobus cca protein. When the two open reading frames were joined together, the expanded open reading frame was similar in sequence to the entire Sulfolobus cca protein and displayed features of the active site signature sequence proposed for members of class I enzymes within the superfamily of nucleotidyltransferases (Yue et al., 1996, RNA 2, 895–908). A possible UUG start codon was identified based on significant sequence similarity of the resulting amino-terminal region to that of Sulfolobus, and on a six-base complementarity between an adjacent upstream sequence and Methanococcus 16S rRNA. Received: 10 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号