首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

2.
Photosynthetic capacity and leaf properties of sun and shade leaves of overstorey sweetgum trees (Liquidambar styraciflua L.) were compared over the first 3 years of growth in ambient or ambient + 200 μL L?1 CO2 at the Duke Forest Free Air CO2 Enrichment (FACE) experiment. We were interested in whether photosynthetic down‐regulation to CO2 occurred in sweetgum trees growing in a forest ecosystem, whether shade leaves down‐regulated to a greater extent than sun leaves, and if there was a seasonal component to photosynthetic down‐regulation. During June and September of each year, we measured net photosynthesis (A) versus the calculated intercellular CO2 concentration (Ci) in situ and analysed these response curves using a biochemical model that described the limitations imposed by the amount and activity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Vcmax) and by the rate of ribulose‐1,5‐bisphosphate (RuBP) regeneration mediated by electron transport (Jmax). There was no evidence of photosynthetic down‐regulation to CO2 in either sun or shade leaves of sweetgum trees over the 3 years of measurements. Elevated CO2 did not significantly affect Vcmax or Jmax. The ratio of Vcmax to Jmax was relatively constant, averaging 2·12, and was not affected by CO2 treatment, position in the canopy, or measurement period. Furthermore, CO2 enrichment did not affect leaf nitrogen per unit leaf area (Na), chlorophyll or total non‐structural carbohydrates of sun or shade leaves. We did, however, find a strong relationship between Na and the modelled components of photosynthetic capacity, Vcmax and Jmax. Our data over the first 3 years of this experiment corroborate observations that trees rooted in the ground may not exhibit symptoms of photosynthetic down‐regulation as quickly as tree seedlings growing in pots. There was a strong sustained enhancement of photosynthesis by CO2 enrichment whereby light‐saturated net photosynthesis of sun leaves was stimulated by 63% and light‐saturated net photosynthesis of shade leaves was stimulated by 48% when averaged over the 3 years. This study suggests that this CO2 enhancement of photosynthesis will be sustained in the Duke Forest FACE experiment as long as soil N availability keeps pace with photosynthetic and growth processes.  相似文献   

3.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   

4.
Ranunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade‐leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun‐leaves. Carbon assimilation/light and Ci response curves were not different in sun‐ and shade‐leaves, but photosynthetic capacity was the highest in sun‐leaves. Based on calculation of the apparent specificity factor of ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco), the magnitude of alternative electron flow unrelated to carboxylation and oxygenation of Rubisco correlated to the PTOX content in sun‐, shade‐ and growth chamber‐leaves. Similarly, fluorescence induction kinetics indicated more complete and more rapid reoxidation of the plastoquinone (PQ) pool in sun‐ than in shade‐leaves. Blocking electron flow to assimilation, photorespiration and the Mehler reaction with appropriate inhibitors showed that sun‐leaves were able to maintain higher electron flow and PQ oxidation. The results suggest that PTOX can act as a safety valve in R. glacialis leaves under conditions where incident photon flux density (PFD) exceeds the growth PFD and under conditions where the plastoquinone pool is highly reduced. Such conditions can occur frequently in alpine climates due to rapid light and temperature changes.  相似文献   

5.
We investigated how light and CO2 levels interact to influence growth, phenology, and the physiological processes involved in leaf senescence in red oak (Quercus rubra) seedlings. We grew plants in high and low light and in elevated and ambient CO2. At the end of three years of growth, shade plants showed greater biomass enhancement under elevated CO2 than sun plants. We attribute this difference to an increase in leaf area ratio (LAR) in shade plants relative to sun plants, as well as to an ontogenetic effect: as plants increased in size, the LAR declined concomitant with a decline in biomass enhancement under elevated CO2 Elevated CO2 prolonged the carbon gain capacity of shade‐grown plants during autumnal senescence, thus increasing their functional leaf lifespan. The prolongation of carbon assimilation, however, did not account for the increased growth enhancement in shade plants under elevated CO2. Elevated CO2 did not significantly alter leaf phenology. Nitrogen concentrations in both green and senesced leaves were lower under elevated CO2 and declined more rapidly in sun leaves than in shade leaves. Similar to nitrogen concentration, the initial slope of A/Ci curves indicated that Rubisco activity declined more rapidly in sun plants than in shade plants, particularly under elevated CO2. Absolute levels of chlorophyll were affected by the interaction of CO2 and light, and chlorophyll content declined to a minimal level in sun plants sooner than in shade plants. These declines in N concentration, in the initial slope of A/Ci curves, and in chlorophyll content were consistent with declining photosynthesis, such that elevated CO2 accelerated senescence in sun plants and prolonged leaf function in shade plants. These results have implications for the carbon economy of seedlings and the regeneration of red oak under global change conditions.  相似文献   

6.
The seasonal trends in water use efficiency of sun and shade leaves of mature oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees were assessed in the upper canopy of an English woodland. Intrinsic water use efficiency (net CO2 assimilation rate/leaf conductance, A/g) was measured by gas exchange and inferred from C isotope discrimination (δ13C) methods. Shade leaves had consistently lower δ13C than sun leaves (by 1–2‰), the difference being larger in sycamore. Buds had distinct sun and shade isotopic signatures before bud break and received an influx of 13C-rich C before becoming net autotrophs. After leaf full expansion, δ13C declined by 1–2‰ gradually through the season, emphasising the importance of imported carbon in the interpretation of leaf δ13C values in perennial species. There was no significant difference between the two species in the value of intrinsic water use efficiency for either sun or shade leaves. For sun leaves, season-long A/g calculated from δ13C (72–78 μmol CO2 [mol H2O]−1) was 10–16% higher than that obtained from gas exchange and in situ estimates of leaf boundary layer conductance. For shade leaves, the gas exchange–derived values were low, only 10–18% of the δ13C-derived values. This is ascribed to difficulties in obtaining a comprehensive sample of gas exchange measurements in the rapidly changing light environment.  相似文献   

7.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

8.
Summary Seedlings of the Caesalpinoids Hymenaea courbaril, H. parvifolia and Copaifera venezuelana, emergent trees of Amazonian rainforest canopies, and of the Araucarian conifers Agathis microstachya and A. robusta, important elements in tropical Australian rainforests, were grown at 6% (shade) and 100% full sunlight (sun) in glasshouses. All species produced more leaves in full sunlight than in shade and leaves of sun plants contained more nitrogen and less chlorophyll per unit leaf area, and had a higher specific leaf weight than leaves of shade plants. The photosynthetic response curves as a function of photon flux density for leaves of shade-grown seedlings showed lower compensation points, higher quantum yields and lower respiration rates per unit leaf area than those of sun-grown seedlings. However, except for A. robusta, photosynthetic acclimation between sun and shade was not observed; the light saturated rates of assimilation were not significantly different. Intercellular CO2 partial pressure was similar in leaves of sun and shade-grown plants, and assimilation was limited more by intrinsic mesophyll factors than by stomata. Comparison of assimilation as a function of intercellular CO2 partial pressure in sun- and shade-grown Agathis spp. showed a higher initial slope in leaves of sun plants, which was correlated with higher leaf nitrogen content. Assimilation was reduced at high transpiration rates and substantial photoinhibition was observed when seedlings were transferred from shade to sun. However, after transfer, newly formed leaves in A. robusta showed the same light responses as leaves of sun-grown seedlings. These observations on the limited potential for acclimation to high light in leaves of seedlings of rainforest trees are discussed in relation to regeneration following formation of gaps in the canopy.  相似文献   

9.
K. -J. Dietz  U. Schreiber  U. Heber 《Planta》1985,166(2):219-226
The response of chlorophyll fluorescence elicited by a low-fluence-rate modulated measuring beam to actinic light and to superimposed 1-s pulses from a high-fluence-rate light source was used to measure the redox state of the primary acceptor Q A of photosystem II in leaves which were photosynthesizing under steady-state conditions. The leaves were exposed to various O2 and CO2 concentrations and to different energy fluence rates of actinic light to assess the relationship between rates of photosynthesis and the redox state of Q A. Both at low and high fluence rates, the redox state of Q A was little altered when the CO2 concentration was reduced from saturation to about 600 l·l-1 although photosynthesis was decreased particularly at high fluence rates. Upon further reduction in CO2 content the amount of reduced Q A increased appreciably even at low fluence rates where light limited CO2 reduction. Both in the presence and in the absence of CO2, a more reduced Q A was observed when the O2 concentration was below 2%. Q A was almost fully reduced when leaves were exposed to high fluence rates under nitrogen. Even at low fluence rates, Q A was more reduced in shade leaves of Asarum europaeum and Fagus sylvatica than in leaves of Helianthus annuus and Fagus sylvatica grown under high light. Also, in shade leaves the redox state of Q A changed more during a transition from air containing 350 l·l-1 CO2 to CO2-free air than in sun leaves. The results are discussed with respect to the energy status and the CO2-fixation rate of the leaves.Abbreviations and symbols L 1,2 first and second actinic light beam - Q A primary acceptor of photosystem II - q Q Q-quenching  相似文献   

10.
The functional roles of the contrasting morphologies of sun and shade shoots of the evergreen shrub Heteromeles arbutifolia were investigated in chaparral and understory habitats by applying a three-dimensional plant architecture simulation model, YPLANT. The simulations were shown to accurately predict the measured frequency distribution of photosynthetic photon flux density (PFD) on both the leaves and a horizontal surface in the open, and gave reasonably good agreement for the more complex light environment in the shade. The sun shoot architecture was orthotropic and characterized by steeply inclined (mean = 71o) leaves in a spiral phyllotaxy with short internodes. This architecture resulted in relatively low light absorption efficiencies (E A) for both diffuse and direct PFD, especially during the summer when solar elevation angles were high. Shade shoots were more plagiotropic with longer internodes and a pseudo-distichous phyllotaxis caused by bending of the petioles that positioned the leaves in a nearly horizontal plane (mean = 5o). This shade-shoot architecture resulted in higher E A values for both direct and diffuse PFD as compared to those of the sun shoots. Differences in E A between sun and shade shoots and between summer and winter were related to differences in projection efficiencies as determined by leaf and solar angles, and by differences in self shading resulting from leaf overlap. The leaves exhibited photosynthetic acclimation to the sun and the shade, with the sun leaves having higher photosynthetic capacities per unit area, higher leaf mass per unit area and lower respiration rates per unit area than shade leaves. Despite having 7 times greater available PFD, sun shoots absorbed only 3 times more and had daily carbon gains only double of those of shade shoots. Simulations showed that sun and shade plants performed similarly in the open light environment, but that shade shoots substantially outperformed sun shoots in the shade light environment. The shoot architecture observed in sun plants appears to achieve an efficient compromise between maximizing carbon gain while minimizing the time that the leaf surfaces are exposed to PFDs in excess of those required for light saturation of photosynthesis and therefore potentially photoinhibitory. Received: 8 June 1997 / Accepted: 2 November 1997  相似文献   

11.
Barták  M.  Raschi  A.  Tognetti  R. 《Photosynthetica》1999,37(1):1-16
Photosynthetic parameters were studied in Arbutus unedo L. trees growing at either ambient (AC) or elevated EC (mean 465 μmol mol-1) CO2 concentration near a natural CO2 vent in Orciatico, Italy Diurnal courses of net photosynthetic rate (P N), ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), and quantum yield of electron transport through photosystem 2 (Φ2) were measured on sun and shade leaves. The contents of N, C, Ca, K, P, and chlorophyll (Chl) and specific leaf area (SLA) in these leaf categories were also determined. A morning peak and midday depression of P N were found for both AC and EC sun leaves. Long-term EC caused little or no down-acclimation of P N in sum leaves. The estimate of total daily CO2 uptake was lower in AC leaves than in EC leaves. In shade leaves, it reached up to 70 % of the value of sun leaves. The Fv/Fm ratio showed decreasing trend in the morning, reached a minimum at midday (90 % of dawn value), and then increased in the afternoon. The EC had no effect on Fv/Fm either in sun or shade leaves. Plants grown near the CO2 spring had lower Chl content, higher SLA, and higher Ca and K contents than plants grown under AC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The UV‐absorbing capacity (measured as A310 cm?2 and A365 cm?2 or AUVR cm?2) of the shade leaves of four representative evergreen sclerophylls of the Mediterranean region (Quercus coccifera, Q. ilex, Arbutus andrachne and A. unedo) was considerably lower than the corresponding one of sun leaves of the same species. However, fibre optic microprobe measurements showed that adaxial as well as abaxial epidermis of shade leaves of all examined plants, except abaxial epidermis of A. andrachne, were almost as effective as the corresponding ones of the sun leaves in screening out most of the incident UV‐B radiation. There is probably a threshold, under which the concentration of the UV‐B absorbing compounds in the protective tissues is not furthermore reduced, in spite of the low levels of the stress factor (UV‐B radiation) in the environment. On the other hand, the ability of both abaxial and adaxial epidermis to attenuate UV‐A radiation, except of adaxial leaf epidermis of Quercus species, depended on the UV absorbing capacity of the whole‐leaf extracts, with different correlation patterns between the two Quercus species and the two Arbutus species. This could be explained by the fact that shade leaves showed not only quantitative, but also qualitative differences (higher A310/A365 ratio) in the absorbance of their methanolic extracts compared to these of sun leaves. The results of the present study showed that we should not always correlate the depth of penetration of UV radiation into sun and shade leaves according to the corresponding UV absorbing capacity of the whole leaf methanolic extracts, without taking into account all the anatomical, developmental and biochemical (such as different composition and distribution of the UV‐absorbing compounds among the different protective tissues) peculiarities of the leaves of each species.  相似文献   

13.
Abstract The results described represent the first detailed measurements of gas exchange of epiphytic plants with crassulacean acid metabolism (CAM) in the humid tropics. A portable steady-state CO2 and H2O porometer was used to measure net exchange rates of CO2 and H2O vapour (JCO2, JH2O), leaf temperature (T1), air temperature (TA), air relative humidity (RH) and photosynthetically active radiation (PAR) for bromeliads in the field during the dry season in February and March 1983 on the tropical island of Trinidad. Different lengths of tubing (up to 25 m) were used so that the gas exchange could be measured of bromeliads in situ in their epiphytic habitats. Derived parameters such as leaf-air water-vapour-concentration difference (Δw), water-vapour conductance of leaves (g) and internal CO2 partial pressure (piCO2) could be calculated. The particular problems of making such measurements in the humid tropics due to high relative humidities and high dew-point temperatures are discussed. The long and often broad, strap-like leaves of bromeliads are well suited for measurements with the steady-state porometer. It is shown that CAM activity varies along the length of individual leaves, and variability between different leaves is also demonstrated. The major phases of CAM, i.e. nocturnal stomalal opening, CO2 uptake and dark fixation as malic acid (Phase I), daytime stomatal closure and light-dependent assimilation of CO2 derived from decarboxylation of the malic acid (Phase III), and late-afternoon stomatal opening with direct light-dependent assimilation of atmospheric CO2 (Phase IV) were all clearly shown by CAM bromeliads in situ. Their expression and magnitude depended on the environmental conditions. An early-morning peak of CO2 uptake as is characteristic of Phase II of CAM was not detected during the night-day transition. A bromeliad intermediate between C3 and CAM, Guzmania monostachia, showed substantial net CO2 uptake in the early morning but no net uptake integrated over the whole of the night.  相似文献   

14.
Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol–1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol–1 year–1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.  相似文献   

15.
Spatial and daily variation in photosynthetic water-use efficiency was examined in leaves of Betula pendula Roth with respect to distribution of hydraulic conductance within the crown, morphological properties of stomata, and water availability. Intrinsic water-use efficiency (A n/g s) was determined from gas-exchange measurements performed both in situ in a natural forest stand and on detached shoots under laboratory conditions. In intact foliage, sun leaves demonstrated significantly higher (P < 0.001) A n/g s than shade leaves, as photosynthesis in the lower canopy was chronically limited by low light availability. However, this difference reversed in the mid-day period under sufficient irradiance (I > 800 μmol m−2 s−1): A n/g s averaged 28.8 and 24.0 μmol mol−1 (P < 0.01) for shade and sun leaves, respectively. This last finding coincided with the data obtained in laboratory conditions: under equivalent leaf water supply and light, A n/g s in shade foliage was greater (P < 0.001) than in sun foliage across a wide range of irradiance. Thus, shade foliage of B. pendula is characterized by inherently higher A n/g s than sun foliage, associated with more conservative stomatal behavior, and lower soil-to-leaf (K T) and leaf hydraulic conductances. Under unlimited light conditions, a within-crown trade-off between A n/g s and K T becomes apparent. Differences in stomatal conductance between the detached shoots from sunlit and shaded canopy layers were largely attributable to the variation in stomatal morphology; significant relationships were established with characteristics combining stomatal size and density (relative stomatal surface, stomatal pore area index). Stomatal morphology is very likely involved in long-term adjustment of photosynthetic WUE.  相似文献   

16.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

17.
X. Guan  S. Gu 《Photosynthetica》2009,47(3):437-444
In order to investigate the photoprotective function of photorespiration in grapevine under water stress, potted grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were randomly divided into three uniform groups for well-watered [watered every morning to keep the relative water content (RWC) of soil over 70 %], water-stress adapted (drought-adapted at 30 % relative soil water content for 30 days), and water stress without adaptation treatment (water-stressed to 30 % relative soil water content for 3 days). Net assimilation rate (A N), stomatal conductance (g s), substomatal CO2 concentration (C i), transpiration rate (E), actual photochemical efficiency of PSII (ΦPSII), and maximum photochemical efficiency of PSII (Fv/Fm) were recorded by combining measurements of gas exchange and chlorophyll fluorescence. Gross photorespiration (Pr), photosynthetic electron partitioning (JC/JT), photochemical quenching coefficient (qP), and non-photochemical quenching (NPQ) were also calculated. The ratio of net assimilation rate to transpiration rate (A N/E) was used as an indicator of water use efficiency (WUE). A N, apparent Pr, ΦPSII, Fv/Fm, qp, and g s decreased, NPQ increased, and gross Pr sustained at a high level under water stress. This suggests that both photorespiration and energy dissipation play important roles in protecting photosynthetic apparatus against photoinhibition. C i in water-stressed plants without adaptation treatment increased, which indicates the leaves suffered a non-stomatal limitation, while the water-stress adaped plants only suffered a stomatal limitation indicated by low C i.  相似文献   

18.
The water-water cycle which may be helpful for dissipating the excitation pressure over electron transport chain and minimizing the risk of photoinhibition and photodamage was investigated in rice after 10-d P-deficient treatment. Net photosynthetic rate decreased under P-deficiency, thus the absorption of photon energy exceeded the energy required for CO2 assimilation. A more sensitive response of effective quantum yield of photosystem 2 (ΦPS2) to O2 concentration was observed in plants that suffered P starvation, indicating that more electrons were transported to O2 in the P-deficient leaves. The electron transport rate through photosystem 2 (PS 2) (Jf) was stable, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (Jg/Jf) was significantly decreased accompanied by an increase in the alternative electron transport (Ja/Jf), indicating that a considerable electron amount had been transported to O2 during the water-water cycle in the P-deficient leaves. However, the fraction of electron transport to photorespiration (Jo/Jf) was also increased in the P-deficient leaves and it was less sensitive than that of water-water cycle. Therefore, water-water cycle could serve as an efficient electron sink. The higher non-photochemical fluorescence quenching (qN) in the P-deficient leaves depended on O2 concentration, suggesting that the water-water cycle might also contribute to non-radiative energy dissipation. Hence, the enhanced activity of the water-water cycle is important for protecting photosynthetic apparatus under P-deficiency in rice.  相似文献   

19.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

20.
Some ecophysiological features in sun and shade leaves of tall European beech trees (Fagus sylvatica L.) growing in a natural forest stand were investigated. Quantitative leaf characteristics were followed in the field and under controlled conditions. In the sun leaves significantly higher rates of photosynthesis, photorespiration and dark respiration, and also photosynthetic CO2 fixation capacity, photosynthetic productivity, and saturating, adaptation and compensating irradiances were found. Specific leaf mass, mean leaf area, stomata density and size as well as the chlorophyll content per unit dry mass were also significantly different in both types of the leaves. Higher photosynthetic efficiency in the shade leaves allows them a better utilization of the lower irradiance for carbon dioxide uptake. The importance of these findings for annual carbon gain of the shade tolerant European beech species is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号