首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple myeloma (MM) is a neoplasm of plasma cell origin that is largely confined to the bone marrow (BM). Chromosomal translocations and other genetic events are known to contribute to deregulation of signaling pathways that lead to transformation of plasma cells and progression to malignancy. However, the tumor stroma may also provide trophic support and enhance resistance to therapy. Phosphorylation of proteins on tyrosine, serine and threonine residues plays a pivotal role in cell growth and survival. Therefore, knowing the status of phosphorylation-based signaling pathways in cells may provide key insights into how cell growth and survival is promoted in tumor cells. To provide a more comprehensive molecular analysis of signaling disruptions in MM, we conducted a kinome profile comparison of normal plasma cells and MM plasma cells as well as their surrounding cells from normal BM and diseased BM. Integrated pathway analysis of the profiles obtained reveals deregulation of multiple signaling pathways in MM cells but also in surrounding bone marrow blood cells compared to their normal counterparts. The deregulated kinase activities identified herein, which include the mTOR (mammalian target of rapamycin)/p70S6K and ERK1/2 (extracellular signal-regulated kinases 1 and 2) pathways, are potential novel molecular targets in this lethal disease.  相似文献   

2.
3.
Oral squamous cell carcinoma (OSCC) is a disfiguring malignancy and significantly impacts the quality of patient’s life. Kallikrein-related peptidase 4 (KLK4), which is closely related to cancers, is highly expressed in OSCC. To explore the biological function of KLK4 in OSCC, a KLK4-specific shRNA was used to silence its endogenous expression, and then the migration and invasion of OSCC cells were explored. Results of our study showed that silencing KLK4 inhibited the migration and invasion of OSCC cells. The protein levels of epithelial mesenchymal transition-associated markers and proteases were also altered by KLK4 silencing. Further study showed that the phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (AKT) signaling pathway was involved in the function of KLK4. Treatment with a PI3 K/AKT activator reversed the migration-inhibitory effect of KLK4 shRNA. Our study suggests that KLK4 may contribute to the metastasis of OSCC through the PI3 K/AKT signaling pathway.  相似文献   

4.
5.
6.
Small cell carcinoma of the prostate (SCCP) is a rare and the most aggressive variant of prostate cancer. There is no effective cure or treatment for SCCP. Therefore, there is an urgent need for new therapy to improve the prognosis of patients with SCCP. DUSP1 is a dual specific phosphatase with an increasingly recognized in tumor biology. Altered expression of DUSP1 induced changes in the expression of genes involved in various biological pathways, including cell-cell signaling and angiogenesis. To understand more about the role of DUSP1 in SCCP, we evaluated the biological function and associated regulatory mechanism of DUSP1. In this study, DUSP1 was significantly down-regulated in human SCCP compared with the non-carcinoma tissues (P < 0.05). Overexpression of DUSP1 was found to suppress MAPK signaling and cell proliferation in PC-3 cells. Additionally, silencing of DUSP1 enhanced MAPK signaling and PC-3 cell proliferation. Moreover, it was observed that DUSP1 blocked the phosphorylation of p38 MAPK induced by anisomycin. Taken together, this investigation suggests that DUSP1 is involved in the progression of SCCP and may provide a new therapeutic target for SCCP treatment.  相似文献   

7.
8.

Background

Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer–testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM.

Methods

Frequency and characteristics of antibody responses against cancer–testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients.

Results

We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-285–90.

Conclusions

We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.
  相似文献   

9.
10.
Monoclonal gammopathy of undetermined significance (MGUS) is the requisite precursor to multiple myeloma (MM), a malignancy of antibody-producing plasma B-cells. The genetic basis of MGUS and its progression to MM remains poorly understood. C57BL/KaLwRij (KaLwRij) is a spontaneously-derived inbred mouse strain with a high frequency of benign idiopathic paraproteinemia (BIP), a phenotype with similarities to MGUS including progression to MM. Using mouse haplotype analysis, human MM SNP array data, and whole exome and whole genome sequencing of KaLwRij mice, we identified novel KaLwRij gene variants, including deletion of Samsn1 and deleterious point mutations in Tnfrsf22 and Tnfrsf23. These variants significantly affected multiple cell types implicated in MM pathogenesis including B-cells, macrophages, and bone marrow stromal cells. These data demonstrate that multiple cell types contribute to MM development prior to the acquisition of somatic driver mutations in KaLwRij mice, and suggest that MM may an inherently non-cell autonomous malignancy.  相似文献   

11.
12.
Multifaceted link between cancer and inflammation   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
We evaluated the effects of protein malnutrition on liver morphology and physiology in rats subjected to different malnutrition schemes. Pregnant rats were fed with a control diet or a low protein diet (LPD). Male offspring rats received a LPD during gestation, lactation, and until they were 60 days old (MM group), a late LPD that began after weaning (CM), or a LPD administrated only during the gestation-lactation period followed by a control diet (MC). On day 60, blood was collected and the liver was dissected out. We found a decrease in MM rats’ total body (p < 0.001) and liver (p < 0.05) weight. These and CM rats showed obvious liver dysfunction reflected by the increase in serum glutamic pyruvic transaminase (SGOT) (MM p < 0.001) and serum glutamic pyruvic transaminase (SGPT) (MM and CM p < 0.001) enzymes, and liver content of cholesterol (MM and CM p < 0.001) and triglycerides (MM p < 0.01; CM p < 0.001), in addition to what we saw by histology. Liver dysfunction was also shown by the increase in gamma glutamyl transferase (GGT) (MM, MC, and CM p < 0.001) and GST-pi1 (MM and CM p < 0.001, MC p < 0.05) expression levels. MC rats showed the lowest increment in GST-pi1 expression (MC vs. MM; p < 0.001, MC vs. CM; p < 0.01). ROS production (MM, CM, and MC: p < 0.001), lipid peroxidation (MM, CM, and MC p < 0.001), content of carbonyl groups in liver proteins (MM and CM p < 0.001, MC p < 0.01), and total antioxidant capacity (MM, CM, and MC p < 0.001) were increased in the liver of all groups of malnourished animals. However, MM rats showed the highest increment. We found higher TNF-α (MM and CM p < 0.001), and IL-6 (MM and CM p < 0.001) serum levels and TGF-β liver content (MM p < 0.01; CM p < 0.05), in MM and CM groups, while MC rats reverted the values to normal levels. Pro-survival signaling pathways mediated by tyrosine or serine/threonine kinases (pAKT) (MM and CM p < 0.001; MC p < 0.01) and extrasellular signal-regulated kinase (pERKs) (MM p < 0.01; CM p < 0.05) appeared to be activated in the liver of all groups of malnourished rats, suggesting the presence of cells resistant to apoptosis which would become cancerous. In conclusion, a LPD induced liver damage whose magnitude was related to the developmental stage at which malnutrition occurs and to its length.  相似文献   

15.
CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.  相似文献   

16.
17.
18.
Inflammatory disease plays a critical role in the pathogenesis of many neurological disorders. Astrogliosis and induction of pro-inflammatory mediators such as chemokines, cytokines and inducible nitric oxide synthase (iNOS) are the 'hallmarks' of inflammatory disease. Increased activity of lactosylceramide (LacCer) synthase and increased synthesis of LacCer during glial proliferation, and induction of pro-inflammatory cytokines and iNOS suggests a role for LacCer in these cellular signaling pathways. Studies using complementary techniques of inhibitors and antisense reported that inhibition of LacCer synthesis inhibits glial proliferation, as well as the induction of pro-inflammatory mediators (cytokines and iNOS). This inhibition was bypassed by exogenous LacCer, but not by other related lipids (e.g. glucosylceramide, galactocerebroside, GD1, GM1), indicating a role for LacCer in inflammatory signaling pathways. Furthermore, inhibition of glial proliferation and induction of inflammatory mediators by antisense to Ras GTPase, PI3Kinase and inhibitors of mitogen-activated protein kinase indicate the participation of the phosphoinositide 3-kinase (PI3Kinas)/Ras/mitogen-activated protein kinase/nuclear factor-kappaB (NF-kappaB) signaling pathways in LacCer-mediated inflammatory events thus exposing additional targets for therapeutics for inflammatory disease conditions.  相似文献   

19.
Multiple Myeloma (MM) is a B-cell malignancy that is characterized by osteolytic bone lesions. It has been postulated that positive feedback loops in the interactions between MM cells and the bone microenvironment form reinforcing 'vicious cycles', resulting in more bone resorption and MM cell population growth in the bone microenvironment. Despite many identified MM-bone interactions, the combined effect of these interactions and their relative importance are unknown. In this paper, we develop a computational model of MM-bone interactions and clarify whether the intercellular signaling mechanisms implemented in this model appropriately drive MM disease progression. This new computational model is based on the previous bone remodeling model of Pivonka et al., and explicitly considers IL-6 and MM-BMSC (bone marrow stromal cell) adhesion related pathways, leading to formation of two positive feedback cycles in this model. The progression of MM disease is simulated numerically, from normal bone physiology to a well established MM disease state. Our simulations are consistent with known behaviors and data reported for both normal bone physiology and for MM disease. The model results suggest that the two positive feedback cycles identified for this model are sufficient to jointly drive the MM disease progression. Furthermore, quantitative analysis performed on the two positive feedback cycles clarifies the relative importance of the two positive feedback cycles, and identifies the dominant processes that govern the behavior of the two positive feedback cycles. Using our proposed quantitative criteria, we identify which of the positive feedback cycles in this model may be considered to be 'vicious cycles'. Finally, key points at which to block the positive feedback cycles in MM-bone interactions are identified, suggesting potential drug targets.  相似文献   

20.
As inflammation plays a critical role in the development and progression of cancer, therapeutic targeting of cytokine pathways involved in both tumorigenesis and dictating response to clinical treatments are of significant interest. Recent evidence has highlighted the importance of the pro-inflammatory cytokine interleukin-1 (IL-1) as a key mediator of tumor growth, metastatic disease spread, immunosuppression, and drug resistance in cancer. IL-1 promotes tumorigenesis through diverse mechanisms, including the activation of oncogenic signaling pathways directly in tumor cells and via orchestrating crosstalk between the cellular constituents of the tumor microenvironment (TME), thereby driving cancer growth. This review will provide an overview of IL-1 signaling and physiology and summarize the disparate mechanisms involving IL-1 in tumorigenesis and cancer progression. Additionally, clinical studies targeting IL-1 signaling in the management of solid organ tumors will be summarized herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号