首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The development of the vertebrate head is a highly complex process involving tissues derived from all three germ layers. The endoderm forms pharyngeal pouches, the paraxial mesoderm gives rise to endothelia and muscles, and the neural crest cells, which originate from the embryonic midbrain and hindbrain, migrate ventrally to form cartilage, connective tissue, sensory neurons, and pigment cells. All three tissues form segmental structures: the hindbrain compartmentalizes into rhombomeres, the mesoderm into somitomeres, and the endoderm into serial gill slits. It is not known whether the different segmented tissues in the head develop by the same molecular mechanism or whether different pathways are employed. It is also possible that one tissue imposes segmentation on the others. Most recent studies have emphasized the importance of neural crest cells in patterning the head. Neural crest cells colonize the segmentally arranged arches according to their original position in the brain and convey positional information from the hindbrain into the periphery. During the screen for mutations that affect embryonic development of zebrafish, one mutant, called van gogh (vgo), in which segmentation of the pharyngeal region is absent, was isolated. In vgo, even though hindbrain segmentation is unaffected, the pharyngeal endoderm does not form reiterated pouches and surrounding mesoderm is not patterned correctly. Accordingly, migrating neural crest cells initially form distinct streams but fuse when they reach the arches. This failure to populate distinct pharyngeal arches is likely due to the lack of pharyngeal pouches. The results of our analysis suggest that the segmentation of the endoderm occurs without signaling from neural crest cells but that tissue interactions between the mesendoderm and the neural crest cells are required for the segmental appearance of the neural crest-derived cartilages in the pharyngeal arches. The lack of distinct patches of neural crest cells in the pharyngeal region is also seen in mutants of one-eyed pinhead and casanova, which are characterized by a lack of endoderm, as well as defects in mesodermal structures, providing evidence for the important role of the endoderm and mesoderm in governing head segmentation.  相似文献   

2.
In vertebrate embryos, streams of cranial neural crest (CNC) cells migrate to form segmental pharyngeal arches and differentiate into segment-specific parts of the facial skeleton. To identify genes involved in specifying segmental identity in the vertebrate head, we screened for mutations affecting cartilage patterning in the zebrafish larval pharynx. We present the positional cloning and initial phenotypic characterization of a homeotic locus discovered in this screen. We show that a zebrafish ortholog of the human oncogenic histone acetyltransferase MOZ (monocytic leukemia zinc finger) is required for specifying segmental identity in the second through fourth pharyngeal arches. In moz mutant zebrafish, the second pharyngeal arch is dramatically transformed into a mirror-image duplicated jaw. This phenotype resembles a similar but stronger transformation than that seen in hox2 morpholino oligo (hox2-MO) injected animals. In addition, mild anterior homeotic transformations are seen in the third and fourth pharyngeal arches of moz mutants. moz is required for maintenance of most hox1-4 expression domains and this requirement probably at least partially accounts for the moz mutant homeotic phenotypes. Homeosis and defective Hox gene expression in moz mutants is rescued by inhibiting histone deacetylase activity with Trichostatin A. Although we find early patterning of the moz mutant hindbrain to be normal, we find a late defect in facial motoneuron migration in moz mutants. Pharyngeal musculature is transformed late, but not early, in moz mutants. We detect relatively minor defects in arch epithelia of moz mutants. Vital labeling of arch development reveals no detectable changes in CNC generation in moz mutants, but later prechondrogenic condensations are mispositioned and misshapen. Mirror-image hox2-dependent gene expression changes in postmigratory CNC prefigure the homeotic phenotype in moz mutants. Early second arch ventral expression of goosecoid (gsc) in moz mutants and in animals injected with hox2-MOs shifts from lateral to medial, mirroring the first arch pattern. bapx1, which is normally expressed in first arch postmigratory CNC prefiguring the jaw joint, is ectopically expressed in second arch CNC of moz mutants and hox2-MO injected animals. Reduction of bapx1 function in wild types causes loss of the jaw joint. Reduction of bapx1 function in moz mutants causes loss of both first and second arch joints, providing functional genetic evidence that bapx1 contributes to the moz-deficient homeotic pattern. Together, our results reveal an essential embryonic role and a crucial histone acetyltransferase activity for Moz in regulating Hox expression and segmental identity, and provide two early targets, bapx1 and gsc, of moz and hox2 signaling in the second pharyngeal arch.  相似文献   

3.
During animal development, Hox genes are expressed in characteristic, spatially restricted patterns and specify regional identities along the anterior-posterior (A-P) axis. Polycomb group (PcG) proteins in Drosophila repress Hox expression and maintain the expression patterns during development. Mice deficient for homologues of the Drosophila PcG genes, such as M33, bmi1, mel18, rae28 and eed, show altered Hox expression patterns. In this study, we examined the time course of Hoxb3 expression during late gastrulation and early segmentation of rae28-deficient mice. Hoxb3 was expressed ectopically in pharyngeal arch and hindbrain from embryonic day (E) 9.5 and 10.5, respectively. The anterior boundary of ectopic expression in the hindbrain extended gradually in the rostral direction as development proceeded from E10.5 to E12.5. Expression of kreisler and Krox20, which function as positive regulators of Hoxb3 expression, was not affected in rae28-deficient embryos. Analysis of a neural crest marker, p75, in rae28-deficient mice revealed that the neural crest cells begin to ectopically express Hoxb3 after leaving the hindbrain. Our results suggest that rae28 is not required for the establishment but maintenance of Hoxb3 expression.  相似文献   

4.
Individual vertebrate Hox genes specify aspects of segment identity along the anterior-posterior axis. The exquisite in vivo specificity of Hox proteins is thought to result from their interactions with members of the Pbx/Exd family of homeodomain proteins. Here, we report the identification and cloning of a zebrafish gene, lazarus, which is required globally for segmental patterning in the hindbrain and anterior trunk. We show that lazarus is a novel pbx gene and provide evidence that it is the primary pbx gene required for the functions of multiple hox genes during zebrafish development. lazarus plays a critical role in orchestrating the corresponding segmentation of the hindbrain and the pharyngeal arches, a key step in the development of the vertebrate body plan.  相似文献   

5.
Mouse fetuses carrying targeted inactivations of both the RAR(&agr;) and the RARbeta genes display a variety of malformations in structures known to be partially derived from the mesenchymal neural crest originating from post-otic rhombomeres (e.g. thymus and great cephalic arteries) (Ghyselinck, N., Dupé, V., Dierich, A., Messaddeq, N., Garnier, J.M., Rochette-Egly, C., Chambon, P. and Mark M. (1997). Int. J. Dev. Biol. 41, 425-447). In a search for neural crest defects, we have analysed the rhombomeres, cranial nerves and pharyngeal arches of these double null mutants at early embryonic stages. The mutant post-otic cranial nerves are disorganized, indicating that RARs are involved in the patterning of structures derived from neurogenic neural crest, even though the lack of RARalpha and RARbeta has no detectable effect on the number and migration path of neural crest cells. Interestingly, the double null mutation impairs early developmental processes known to be independent of the neural crest e.g., the initial formation of the 3rd and 4th branchial pouches and of the 3rd, 4th and 6th arch arteries. The double mutation also results in an enlargement of rhombomere 5, which is likely to be responsible for the induction of supernumerary otic vesicles, in a disappearance of the rhombomere 5/6 boundary, and in profound alterations of rhombomere identities. In the mutant hindbrain, the expression domain of kreisler is twice its normal size and the caudal stripe of Krox-20 extends into the presumptive rhombomeres 6 and 7 region. In this region, Hoxb-1 is ectopically expressed, Hoxb-3 is ectopically up-regulated and Hoxd-4 expression is abolished. These data, which indicate that retinoic acid signaling through RARalpha and/or RARbeta is essential for the specification of rhombomere identities and for the control of caudal hindbrain segmentation by restricting the expression domains of kreisler and of Krox-20, also strongly suggest that this signaling plays a crucial role in the posteriorization of the hindbrain neurectoderm.  相似文献   

6.
The vertebrate neural plate contains distinct domains of gene expression, prefiguring the future brain areas. In this study, we draw an extended expression map of the rostral neural plate that reveals discrete domains inside the presumptive posterior forebrain. We show, by fate mapping, that these well-defined cell populations will develop into specific diencephalic regions. To address whether these early subterritories are already committed to restricted identities, we began to analyse the consequences of ablation and transplantation of these specific cell populations. We found that precursors of the prethalamus are already specified and irreplaceable at late gastrula stage, because ablation of these cells results in loss of prethalamic markers. Moreover, when transplanted into the ectopic environment of the presumptive hindbrain, these cells still pursue their prethalamic differentiation program. Finally, transplantation of these precursors, in the rostral-most neural epithelium, induces changes in cell identity in the surrounding host forebrain. This cell–non-autonomous property led us to propose that these committed prethalamic precursors may play an instructive role in the regionalization of the developing diencephalon.  相似文献   

7.
Prior to rhombomere development, structures called prorhombomeres appear in the mammalian hindbrain. This study clarifies the developmental relationship between prorhombomeres and their descendent rhombomeres and hindbrain crest cells in mouse embryos by focal dye injections at various levels of prorhombomere A (proRhA), proRhB, and proRhC, as well as at their boundaries. ProRhA gives rise to two rhombomeres, rhombomeres 1 and 2 (r1 and r2), as well as to crest cells that migrate into the first pharyngeal arch, including the trigeminal ganglion. ProRhB develops into r3 and r4 and produces crest cells populating the second arch and acousticofacial ganglion. The anterior portion of proRhC gives rise to r5 and r6 and to crest cells migrating into the third pharyngeal arch and the IXth ganglion; its posterior portion develops into r7 and releases crest cells into the fourth pharyngeal arch region as well as the Xth ganglion. These results suggest that the boundaries between prorhombomeres serve as lineage restrictions for both hind-brain neuroepithelial cells and for segmental origins of crest cell populations in mouse embryos. The Hox code of the mouse head can be schematized in a much simpler way based on this prorhombomeric organization of the hind-brain, suggesting that prorhombomeres primarily underlie mammalian hind-brain segmentation.  相似文献   

8.
In a screen for genes involved in neural crest development, we identified DBHR (DBH-Related), a putative monooxygenase with low homology to dopamine beta-hydroxylase (DBH). Here, we describe novel expression patterns for DBHR in the developing embryo and particularly the neural crest. DBHR is an early marker for prospective neural crest, with earliest expression at the neural plate border where neural crest is induced. Furthermore, DBHR expression persists in migrating neural crest and in many, though not all, crest derivatives. DBHR is also expressed in the myotome, from the earliest stages of its formation, and in distinct regions of the neural tube, including even-numbered rhombomeres of the hindbrain. In order to investigate the signals that regulate its segmented pattern in the hindbrain, we microsurgically rotated the rostrocaudal positions of rhombomeres 3/4. Despite their ectopic position, both rhombomeres continued to express DBHR at the level appropriate for their original location, indicating that DBHR is regulated autonomously within rhombomeres. We conclude that DBHR is a divergent member of a growing family of DBH-related genes; thus, DBHR represents a completely new type of neural crest marker, expressed throughout the development of the neural crest, with possible functions in cell-cell signaling.  相似文献   

9.
Avian neural crest cells migrate on precise pathways to their target areas where they form a wide variety of cellular derivatives, including neurons, glia, pigment cells and skeletal components. In one portion of their pathway, trunk neural crest cells navigate in the somitic mesoderm in a segmental fashion, invading the rostral, while avoiding the caudal, half-sclerotome. This pattern of cell migration, imposed by the somitic mesoderm, contributes to the metameric organization of the peripheral nervous system, including the sensory and sympathetic ganglia. At hindbrain levels, neural crest cells also travel from the neural tube in a segmental manner via three migratory streams of cells that lie adjacent to even-numbered rhombomeres. In this case, the adjacent mesoderm does not possess an obvious segmental organization, compared to the somitic mesoderm at trunk levels. Thus, the mechanisms by which the embryo controls segmentally-organized cell migrations have been a fascinating topic over the past several years. Here, I discuss findings from classical and recent studies that have delineated several of the tissue, cellular and molecular elements that contribute to the segmental organization of neural crest migration, primarily in the avian embryo. One common theme is that neural crest cells are prohibited from entering particular territories in the embryo due to the expression of inhibitory factors. However, permissive, migration-promoting factors may also play a key role in coordinating neural crest migration.  相似文献   

10.
11.
The anteroposterior identity of cranial neural crest cells is thought to be preprogrammed before these cells emigrate from the neural tube. Here we test this assumption by developing techniques for transposing cells in the hindbrain of mouse embryos, using small numbers of cells in combination with genetic and lineage markers. This technique has uncovered a surprising degree of plasticity with respect to the expression of Hox genes, which can be used as markers of different hindbrain segments and cells, in both hindbrain tissue and cranial neural crest cells. Our analysis shows that the patterning of cranial neural crest cells relies on a balance between permissive and instructive signals, and underscores the importance of cell-community effects. These results reveal a new role for the cranial mesoderm in patterning facial tissues. Furthermore, our findings argue against a permanently fixed prepatterning of the cranial neural crest that is maintained by passive transfer of positional information from the hindbrain to the periphery.  相似文献   

12.
Loss of Twist function in the cranial mesenchyme of the mouse embryo causes failure of closure of the cephalic neural tube and malformation of the branchial arches. In the Twist(-/-) embryo, the expression of molecular markers that signify dorsal forebrain tissues is either absent or reduced, but those associated with ventral tissues display expanded domains of expression. Dorsoventral organization of the mid- and hindbrain and the anterior-posterior pattern of the neural tube are not affected. In the Twist(-/-) embryo, neural crest cells stray from the subectodermal migratory path and the late-migrating subpopulation invades the cell-free zone separating streams of cells going to the first and second branchial arches. Cell transplantation studies reveal that Twist activity is required in the cranial mesenchyme for directing the migration of the neural crest cells, as well as in the neural crest cells within the first branchial arch to achieve correct localization. Twist is also required for the proper differentiation of the first arch tissues into bone, muscle, and teeth.  相似文献   

13.
Mouse embryos with a loss-of-function mutation in the gene encoding the receptor tyrosine kinase ErbB4 exhibit misprojections of cranial sensory ganglion afferent axons. Here we analyse ErbB4-deficient mice, and find that morphological differences between wild-type and mutant cranial ganglia correlate with aberrant migration of a subpopulation of hindbrain-derived cranial neural crest cells within the paraxial mesenchyme environment. In transplantation experiments using new grafting techniques in cultured mouse embryos, we determine that this phenotype is non-cell-autonomous: wild-type and mutant neural crest cells both migrate in a pattern consistent with the host environment, deviating from their normal pathway only when transplanted into mutant embryos. ErbB4 signalling events within the hindbrain therefore provide patterning information to cranial paraxial mesenchyme that is essential for the proper migration of neural crest cells.  相似文献   

14.
Hoxa1 and Hoxb1 have overlapping synergistic roles in patterning the hindbrain and cranial neural crest cells. The combination of an ectoderm-specific regulatory mutation in the Hoxb1 locus and the Hoxa1 mutant genetic background results in an ectoderm-specific double mutation, leaving the other germ layers impaired only in Hoxa1 function. This has allowed us to examine neural crest and arch patterning defects that originate exclusively from the neuroepithelium as a result of the simultaneous loss of Hoxa1 and Hoxb1 in this tissue. Using molecular and lineage analysis in this double mutant background we demonstrate that presumptive rhombomere 4, the major site of origin of the second pharyngeal arch neural crest, is reduced in size and has lost the ability to generate neural crest cells. Grafting experiments using wild-type cells in cultured normal or double mutant mouse embryos demonstrate that this is a cell-autonomous defect, suggesting that the formation or generation of cranial neural crest has been uncoupled from segmental identity in these mutants. Furthermore, we show that loss of the second arch neural crest population does not have any adverse consequences on early patterning of the second arch. Signalling molecules are expressed correctly and pharyngeal pouch and epibranchial placode formation are unaffected. There are no signs of excessive cell death or loss of proliferation in the epithelium of the second arch, suggesting that the neural crest cells are not the source of any indispensable mitogenic or survival signals. These results illustrate that Hox genes are not only necessary for proper axial specification of the neural crest but that they also play a vital role in the generation of this population itself. Furthermore, they demonstrate that early patterning of the separate components of the pharyngeal arches can proceed independently of neural crest cell migration.  相似文献   

15.
Neural crest cells are essential for proper development of a variety of tissues and structures, including peripheral and autonomic nervous systems, facial skeleton, aortic arches and pharyngeal glands like the thymus and parathyroids. Previous work has shown that bone morphogenic protein (BMP) signalling is required for the production of migratory neural crest cells that contribute to the neurogenic and skeletogenic lineages. We show here that BMP-dependent neural crest cells are also required for development of the embryonic aortic arches and pharynx-derived glands. Blocking formation or migration of this crest cell population from the caudal hindbrain resulted in strong phenotypes in the cardiac outflow tract and the thymus. Thymic aplasia or hypoplasia occurs despite uncompromised gene induction in the pharyngeal endoderm. In addition, when hypoplastic thymic tissue is found, it is ectopically located, but functional in thymopoiesis. Our data indicate that thymic phenotypes produced by neural crest deficits result from aberrant formation of pharyngeal pouches and impaired migration of thymic primordia because the mesenchymal content in the branchial arches is below a threshold level.  相似文献   

16.
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.  相似文献   

17.
SUMMARY Annelids and arthropods, despite their distinct classification as Lophotrochozoa and Ecdysozoa, present a morphologically similar, segmented body plan. To elucidate the evolution of segmentation and, ultimately, to align segments across remote phyla, we undertook a refined expression analysis to precisely register the expression of conserved regionalization genes with morphological boundaries and segmental units in the marine annelid Platynereis dumerilii. We find that Pdu-otx defines a brain region anterior to the first discernable segmental entity that is delineated by a stripe of engrailed-expressing cells. The first segment is a "cryptic" segment that lacks chaetae and parapodia. This and the subsequent three chaetigerous larval segments harbor the anterior expression boundary of gbx, hox1, hox4, and lox5 genes, respectively. This molecular segmental topography matches the segmental pattern of otx, gbx, and Hox gene expression in arthropods. Our data thus support the view that an ancestral ground pattern of segmental identities existed in the trunk of the last common protostome ancestor that was lost or modified in protostomes lacking overt segmentation.  相似文献   

18.
Studies of chick-quail chimeras have reported that avian ultimobranchial C cells originate from the neural crest. It has consequently been assumed, without much supporting evidence, that mammalian thyroid C cells also originate from the neural crest. To test this notion, we employed both Connexin43-lacZ and Wnt1-Cre/R26R transgenic mice, because their neural crest cells can be marked. We also examined the immunohistochemical expression of a number of markers that identify migratory or postmigratory neural crest cells, namely, TuJ1, neurofilament 160, nestin, P75NTR, and Sox10. Moreover, we examined the expression of E-cadherin, an epithelial cell marker. At embryonic day (E)10.5, the neural crest cells densely populated the pharyngeal arches but were not distributed in the pharyngeal pouches, including the fourth pouch. At E11.5, the ultimobranchial rudiment formed from the fourth pouch and was located close to the fourth arch artery. At E13.0, this organ came into contact with the thyroid lobe, and at E13.5, it fused with this lobe. However, the ultimobranchial body was not colonized by neural crest-derived cells at any of these developmental stages. Instead, all ultimobranchial cells, as well as the epithelium of the fourth pharyngeal pouch, were intensely immunoreactive for E-cadherin. Furthermore, confocal microscopy of newborn mouse thyroid glands revealed colocalization of calcitonin and E-cadherin in the C cells. The cells, however, were not marked in the Wnt-Cre/R26R mice. These results indicated that murine thyroid C cells are derived from the endodermal epithelial cells of the fourth pharyngeal pouch and do not originate from neural crest cells.  相似文献   

19.
Fibroblast growth factor 15 (Fgf15) is expressed in the developing mouse central nervous system and pharyngeal arches. Fgf15 mutant mice showed defects of the cardiac outflow tract probably because of aberrant behavior of the cardiac neural crest cells. In this study, we examined cis-elements of the Fgf15 gene by transient transgenic analysis using lacZ as a reporter. We identified two enhancers: one directed lacZ expression in the hindbrain/spinal cord and the other in the posterior midbrain (pmb), rhombomere1 (r1) and pharyngeal epithelia. Interestingly, human genomic regions which are highly homologous to these two mouse enhancers showed almost the same enhancer activities as those of mice in transgenic mouse embryos, indicating that the two enhancers are conserved between humans and mice. We also showed that the mouse and human pmb/r1 enhancer can regulate lacZ expression in chick embryos in almost the same way as in mouse embryos. We found that the lacZ expression domain with this enhancer was expanded by ectopic Fgf8b expression, suggesting that this enhancer is regulated by Fgf8 signaling. Moreover, over-expression of Fgf15 resulted in up-regulation of Fgf8 expression in the isthmus/r1. These findings suggest that a reciprocal positive regulation exists between Fgf15 and Fgf8 in the isthmus/r1. Together with cardiac outflow tract defects in Fgf15 mutants, the conservation of enhancers in the hindbrain/spinal cord and pharyngeal epithelia suggests that human FGF19 (ortholog of Fgf15) is involved in early development and the distribution of cardiac neural crest cells and is one of the candidate genes for congenital heart defects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号