首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17-27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided.  相似文献   

3.
The Allen Brain Atlas (ABA, www.brain-map.org) is a genome wide, spatially registered collection of cellular resolution in situ hybridization gene expression image data of the C57Bl/6J mouse brain. Derived from the ABA, the Anatomic Gene Expression Atlas (AGEA, http://mouse.brain-map.org/agea) has demonstrated both laminar and areal spatial gene expression correlations in the mouse cortex. While the mouse cortex is lissencephalic, its curvature and substantial bending in boundary areas renders it difficult to visualize and analyze laminar versus areal effects in a rectilinear coordinate framework. In context of human and non-human primate cortex, surface-based representation has proven useful for understanding relative locations of laminar, columnar, and areal features. In this paper, we describe a methodology for constructing surface-based flatmaps of the mouse cortex that enables mapping of gene expression data from individual genes in the ABA, or probabilistic expression maps from the AGEA, to identify and visualize genetic relationships between layers and areas.  相似文献   

4.
The combination of a powerful well-designed user interface with detailed high-quality data sets can create new possibilities for data exploration and analysis. The Allen Brain Atlas (http://www.brain-map.org) provides a collection of tools for examining a set of images that detail gene expression in the mouse brain. Powerful web-based viewers for individual images and parallel examination of related images interact with an external application for three-dimensional views. The underlying dataset, generated via high-throughput analysis of expression patterns of more than 21,000 genes in adult mouse brains, provides three-dimensional views of gene expression patterns displayed in the context of an anatomical ontology. Facilities for filtering views, saving views of interest, annotating images and sharing views via email support the ongoing process of analysis and provide a model for the future of integrated tools for analysing large image data sets.  相似文献   

5.
Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).  相似文献   

6.
This paper provides a simple introduction to the reconstructions and data-handling tools stored on the Edinburgh Mouse Atlas CD, together with some of the ways in which the viewers and software can be used to understand mouse development and analyse data. The key aspect of the Mouse Atlas is that the underlying models are a complete representation of the histology, which has not been constrained to a particular interpretation. This means, for example, that the current anatomy domains can be further subdivided as required to any resolution up to the resolution of the models (2-7 microm). In the CD of the early embryos described here, virtually all tissues that can be usefully distinguished either by the histology or morphologically have been delineated.  相似文献   

7.
8.
MOTIVATION: Anatomy ontologies have a growing role in bioinformatics-for example, in indexing gene expression data in model organisms. To relate or draw conclusions from data so indexed, anatomy ontologies must be equipped with the formal vocabulary that would allow statements about meronomy to be qualified by constraints such as part of the male or part at the embryonic stage. Lacking such a vocabulary, anatomists have built this information into the structure of the ontology or into anatomical terms. For example, in the FlyBase anatomy for drosophila, the term larval abdominal segment encodes the stage in the term, while the terms male genital disc and female genital disc encode the sex. It remains implicit that a fly has one and only one of these parts during its larval stage. Such indicators of context can and should be represented explicitly in the ontology. RESULTS: The framework we have defined for anatomical ontologies allows the canonical anatomy structures of a given species to be those common to all sexes, and to have either male, female or hermaphrodite parts--but not combinations of the latter. Temporal aspects of development are addressed by associating a stage with organism parts and requiring a connected anatomy to have parts that exist at a common stage. Both sex and anatomical stage are represented by attributes. This formalization clarifies ontological structure and meaning and increases the capacity for formal reasoning about anatomy. The framework also supports generalizations such as vertebrate and invertebrate, thereby allowing the representation of anatomical structures that are common across a sub-phylum.  相似文献   

9.
EBV感染及TPA处理前后人CR2转染细胞的基因差异表达谱   总被引:10,自引:3,他引:10  
采用Mouse Atlas^TM cDNA Expression Arrays对EBV感染前后及TPA处理前后的人CR2转染小鼠细胞基因表达进行分析,通过Eagle EyeⅡ图像分析系统进行密度扫描以寻找差异表达基因。结果表明已初步建立EBV和TPA的转染细胞基因差异表达谱,为进一步研究二者对转染小鼠 细胞的影响奠定了良好基础,也为进一步发现转染小鼠细胞中EBV和TPA相关的信号转导通路提供线索。  相似文献   

10.
11.
12.
13.
The Medaka Expression Pattern Database (MEPD) is a database for gene expression patterns determined by in situ hybridization in the small freshwater fish medaka (Oryzias latipes). Data have been collected from various research groups and MEPD is developing into a central expression pattern depository within the medaka community. Gene expression patterns are described by images and terms of a detailed medaka anatomy ontology of over 4000 terms, which we have developed for this purpose and submitted to Open Biological Ontologies. Sequences have been annotated via BLAST match results and using Gene Ontology terms. These new features will facilitate data analyses using bioinformatics approaches and allow cross-species comparisons of gene expression patterns. Presently, MEPD has 19,757 entries, for 1024 of them the expression pattern has been determined.  相似文献   

14.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.  相似文献   

15.
小鼠白蛋白是肝组织特异性表达的蛋白 ,这种特异性是由白蛋白启动子所介导的 .以2 2 35A- 1质粒为模板 ,通过 PCR扩增获得小鼠白蛋白启动子 /增强子基因片段 ,用小鼠白蛋白启动子 /增强子基因片段取代 p HCV- neo4质粒 (含 HCV5′NCR调控荧光素酶基因 )的 CMV启动子 ,构建了一种白蛋白启动子启动转录的 HCV5′NCR调控荧光素酶表达质粒 (p A1 b- HCV) .该质粒能在小鼠肝癌细胞中表达且较小鼠其它癌细胞中表达水平明显增高 ,表明成功地构建了肝特异性表达的 HCV5′NCR调控荧光素酶表达质粒 .该研究为建立肝特异性表达的 HCV5′NCR转基因小鼠模型奠定了基础 ,对评价 HCV特异性反义药物及肝靶向性运载系统的作用具有重要的实际意义  相似文献   

16.
17.
18.
Phenotype ontologies are typically constructed to serve the needs of a particular community, such as annotation of genotype-phenotype associations in mouse or human. Here we demonstrate how these ontologies can be improved through assignment of logical definitions using a core ontology of phenotypic qualities and multiple additional ontologies from the Open Biological Ontologies library. We also show how these logical definitions can be used for data integration when combined with a unified multi-species anatomy ontology.  相似文献   

19.
One of the challenges to the effective utilization of cDNA microarray analysis in mouse models of oncogenesis is the choice of a critical set of probes that are informative for human disease. Given the thousands of genes with a potential role in human oncogenesis and the hundreds of thousands of mouse sequences available for use as probes, selection of an informative set of mouse probes can be an overwhelming task. We have developed a web based sequence mining tool using DataBase Independent (DBI) Perl to annotate publicly available sequences. The Mouse Oncochip Design Tool uses the Mouse Genome Database (MGD) developed and maintained by the Jackson Laboratories for mouse DNA sequences. There are over 380 000 sequences in their database. The output list has been ordered to present the genes more likely to be informative in a mouse model of human cancer using a candidate set of oncogenes to order the list. Mouse sequences that represent genes that are homologous with a member of a human oncogene set are listed first. In addition it provides a set of links for information on clone source gene function. Contact: http://nciarray.nci.nih.gov/cgi-bin/me/mouse_design.cgi  相似文献   

20.
The Gene Expression Database (GXD) is a community resource that stores and integrates expression information for the laboratory mouse, with a particular emphasis on mouse development, and makes these data freely available in formats appropriate for comprehensive analysis. GXD is implemented as a relational database and integrated with the Mouse Genome Database (MGD) to enable global analysis of genotype, expression and phenotype information. Interconnections with sequence databases and with databases from other species further extend GXD's utility for the analysis of gene expression data. GXD is available through the Mouse Genome Informatics Web Site at http://www.informatics.jax.org/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号