首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two serous gland types (I and II) in the skin of the Argentine toad Melanophryniscus stelzneri were discovered using light and electron microscopy. Glands of the two types differ in several traits: features of the products (both mature and immature), organelles involved in biosynthesis, and paths of serous maturation. No consistent differences, however, were detected between the myoepithelial sheaths encircling the secretory units. Type I glands manufacture vesicles containing a single dense body with a repeating substructure and conform to the fundamental secretory line of bufonid skin, a secretory line involved in biosynthesis of steroids. Type II glands synthesize granules of varying densities and seem to belong to a line of glands that secrete proteinaceous products. The occurrence of the two serous gland types in Melanophryniscus stelzneri is discussed in a comparison with current literature on the morphofunctional characteristics of anuran poison glands, which perform both regulative and defensive roles. It is suggested that di- or polymorphism in serous glands is an adaptive trait that allows differential release of active molecules on the body surface. J. Morphol. 237:19–32, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The three major salivary glands of the monotreme echidna are described. The parotid is a typical serous gland with tubulo-acinar secretory endpieces and a well-developed system of striated ducts. The mandibular gland, although light microscopically resembling a mucous gland, secretes very little glycoprotein. Its cells are packed instead with serous granules, resembling in fine structure the “bull's eye” granules in the mandibular gland of the European hedgehog Erinaceus europaeus. The sublingual glands secrete an extremely viscous mucous saliva. Expulsion of this saliva through the narrow ducts is probably aided by contraction of the extensive myoepithelial sheaths surrounding the secretory tubules. Application of the glyoxylic acid induced fluorescence method failed to demonstrate adrenergic innervation in any of the glands.  相似文献   

3.
Beside the ordinary granular (or serous) glands, the skin of the leptodactylid frog Physalaemus biligonigerus possesses peculiar clusters of large granular units, the 'inguinal' glands, located in the dorsolateral areas of the pelvic girdle. Both gland types store their specific products within the syncytial cytoplasm of the secretory unit. These secretory materials consist of spheroidal or ellipsoidal bodies (granules) with a repeating substructure. The subcellular features of the immature products of the ordinary serous and inguinal glands are identical. However, these products undergo divergent maturative processes, leading to fluidation on the one hand and condensation on the other. Secretory release into the small gland lumen was observed in both cases, involving merocrine mechanisms. On the basis of the analysis of cutaneous serous gland polymorphism in anurans, the inguinal units in P. biligonigerus do not appear to be an independent line. Rather, these large units belong to the ordinary serous type and represent a gland population specialized in the storage of remarkable amounts of product used in chemical defence of the skin.  相似文献   

4.
Summary Time-lapse phase-contrast cinematography revealed contractile activity within mouse submandibular salivary gland rudiments in organotypic culture. Three types of contraction were distinguishable. In type I (voiding contractions), all portions of the gland contracted synchronously, and the active state ranged from 30 min to 2 hr. In type II (priming contractions), all portions of the gland contracted synchronously, but the active state was shorter, ranging from 4 to 10 min. In type III (churning contractions), isolated foci in lobules or secretory units throughout the gland contracted asynchronously and had very short active states of about 1 min. By electron microscopy, myoepithelial cells could first be demonstrated in submandibular glands developing either in vitro or in vivo, at 21 days postconception. Contractions in the cultured rudiments began as early as 18 days postconception. Since neither smooth nor striated muscle could be identified in these glands by electron microscopy, the contractions are believed to result from myoepithelial activity that apparently may begin before ultrastructural evidence of myoepithelial differentiation is contractile function and indirect evidence has lent ample support to this presumption, the present study represents the first direct cinematographic demonstration and characterization of myoepithelial contractions, under conditions in vitro.  相似文献   

5.
The serous (poison) cutaneous glands of the Pacific tree-frog Hyla regilla were induced to release their product by 10(-3)M nor-epinephrine stimulation. After discharge structural and ultrastructural features of the cutaneous glands involved in release were observed. Furthermore, the discharged product, consisting of discrete, secretory granules, was collected and processed for transmission electron microscope analysis. As indicated by patterns found in the myoepithelium encircling the syncytial secretory unit, gland discharge is caused by contraction of the peripheral myocytes. Muscle cell compression dramatically affects the syncytium and results in degenerative changes, including expulsion of the secretory unit nuclei. Therefore, the structural collapse in depleted glands has been ascribed to the mechanical activity performed by the myoepithelium during discharge, rather than cytoplasm involution described in conventional, holocrine glands. TEM investigation revealed that the secretory granules collected after discharge maintain their peculiar traits: they consist of recurrent patterns of thin subunits, acquired during serous maturation and provided with remarkable structural stability.  相似文献   

6.
The present study was undertaken to localize adenylate cyclase activity in salivary glands by cytochemical means. For the study, serous parotid glands and mixed sublingual glands of the rat were used. Pieces of the fixed glands were incubated with adenosine triphosphate (ATP) or adenylyl-imidodi-phosphate (AMP-PNP) as substrate: inorganic pyrophosphate or PNP liberated upon the action of adenylate cyclase on the substrates is precipitated by lead ions at their sites of production. In both glands, the reaction product was detected along the myoepithelial cell membranes in contact with secretory cells, indicating that a high level of adenylate cyclase activity occurs in association with these cell membranes. The association with a high level of the enzyme activity might be related to the contractile nature of myoepithelial cells which are supposed to aid secretory cells in discharging secretion products. A high level of adenylate cyclase activity was also detected associated with serous secretory cells (acinar cells of the parotid gland and demilune cells of the sublingual gland), but not with mucous secretory cells. In serous cells, deposits of reaction product were localized along the extracellular space of the apical cell membrane bordering the lumen. This is the portion of the cell membrane which fuses with the granule membranes during secretion. Since the granule membranes are not associated with a detectable level of adenylate cyclase activity, it appears that the enzyme activity becomes activated or associated with the granule membranes as they become part of the cell membrane by fusion. The association with a high level of adenylate cyclase activity appears to be related to the ability of the membrane to fuse with other membranes. It is likely, since the luminal membrane of mucous cells which does not fuse with mucous granule membranes during secretion is not associated with a detectable enzyme activity.  相似文献   

7.
《Autophagy》2013,9(2):298-313
The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to facilitate bulk production of secretory vesicles of the Harderian gland.  相似文献   

8.
The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to facilitate bulk production of secretory vesicles of the Harderian gland.  相似文献   

9.
The mental glands of Hydromantes genei are considered a specialized form of the urodele serous cutaneous glands. Use of a variety of techniques of maceration and digestion as well as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) has shown the three-dimensional morphology of secretory and myoepithelial cells. Secretory cells are pyramidal and rest on an almost continuous layer of myoepithelial cells. The latter have a long ribbon-like body from which branch off transversal and longitudinal processes with swallow-tailed ends. Cytoplasmic processes of secretory cells, containing irregular dense vesicles, squeeze through clefts between myoepithelial cells and may reach, at some points, the basal lamina. The interstices between myoepithelium and secretory cells are extraordinarily rich in nerve endings with clear vesicles. The glandular outlets appear as elliptical stomata in the superficial layer of the epidermis and are lined by horny cells, which invaginate to circumscribe the excretory duct. The morphological results indicate that the myoepithelium of Plethodontidae mental glands differ in some respects from that of amphibian serous cutaneous glands. A double polarity for the secretory cells is also suggested. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

11.
Summary The present immunohistochemical study revealed substance P-immunoreactive neuronal elements in the von Ebner's gland of rats. Immunoreactive ganglion cells were observed as single cells or groups of several immunoreactive ganglion cells among intra-lingual muscles, at the base of the vallate papillae and near the von Ebner's gland. Very numerous substance P-immunoreactive varicose nerve fibres ran closely associated with the serous cells and excretory duct cells, and were seen to run along blood vessels in the gland. Since substance P-immunoreactive ganglion cells were present near the glands, the immunoreactive varicose nerve fibres in the von Ebner's gland may be partly derived from the intra-lingual ganglion cells. These substance P-immunoreactive varicose nerve fibres may have an effect on the secretory activity of the serous cells and duct cells, and on the vasodilation of blood vessels of the von Ebner's gland. Actin immunoreactivity was seen in numerous myoepithelial cells embracing serous cells and duct cells, and in the smooth muscle cells of blood vessels of the gland. By using a double immunolabelling technique with anti-substance P and anti-actin sera, substance P-immunoreactive varicose nerve fibres were found to be in close contact with myoepithelial cells.  相似文献   

12.
The mandibular gland of the pika was examined by light microscopy, and transmission and scanning electron microscopies. The acinar cells were noted to be composed of serous cells and seromucous cells. The serous cells containing granules of moderate and high densities were slightly basophile and strongly positive to PAS, but were not stained with AB. The seromucous cells possessing less dense granules were light and moderately positive to PAS and AB. A sexual dimorphism was observed between these cells: Serous cells were considerably more frequent in males and seromucous cells were more numerous in females. Intercalated duct cells consisted of cuboidal light cells containing a few vesicles in the apical region. Striated ducts were comprised of two portions--a secretory portion and a typical striated portion without secretory granules. The secretory portion was composed of light and dark cells having secretory granules varying in size and density. The epithelium of typical striated portion consisted of light and dark cells containing fine vacuoles and vesicles.  相似文献   

13.
The submandibular gland of the white-winged vampire bat, Diaemus youngi, was examined by electron microscopy. Unlike typical submandibular glands, those in Diaemus have only one type of secretory cell in their endpieces, namely, serous cells. These serous cells are conventional in structure, with an extensive rough endoplasmic reticulum, scattered dictyosomes, and numerous secretory granules. The endpiece lumina, as well as intercellular canaliculi, are fitted with numerous microvilli, which also are present on the otherwise unremarkable intercalated duct cells. Striated ducts are of conventional morphology, but have a brush border-like array of microvilli on their luminal surface. These cells resemble those in the submandibular gland of the common vampire bat, Desmodus rotundus. The presence of an abundance of microvilli in the salivary glands in the two vampire bat species (and their absence from chiropteran species that consume other types of diets) is a strong indication that these structures play a significant role in dealing with the problems posed by a sanguivorous diet.  相似文献   

14.
Serous cutaneous glands are described in newly metamorphosed and juvenile specimens of the horned frog Ceratophrys ornata using light and transmission electron microscopy. We report patterns of biosynthesis and maturation of the specific product of the gland secretory unit. The syncytial, secretory compartment possesses a complex of endoplasmic reticulum (predominantly smooth endoplasmic reticulum after metamorphosis) and Golgi stacks. The serous product is weak in density and is contained in vesicles involved in repeating merging processes. During this maturation activity, secondary lysosomes are observed, which derive from autophagic processes (crinophagy) involving the secretory materials. Ceratophrys ornata, a species representative of the type genus of the family Ceratophrydae, belongs to the heterogeneous group of anurans that, possibly as the result of convergence, all produce cutaneous poisons consisting of vesicles or faint density granules.  相似文献   

15.
Submandibular acinar glands secrete numerous proteins such as digestive enzymes and defense proteins on the basis of the exocrine secretion mode. Exocytosis is a complex process, including a soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion of vesicles and target membrane and the additional activation of cytoskeletal proteins. Relevant data are available predominantly for animal salivary glands, especially of the rat parotid acinar cells. The authors investigated the secretory molecular machinery of acinar (serous) cells in the human submandibular gland by immunohistochemistry and immunofluorescence and found diverse proteins associated with exocytosis for the first time. SNAP-23, syntaxin-2, syntaxin-4, and VAMP-2 were localized at the luminal plasma membrane; syntaxin-2 and septin-2 were expressed in vesicles in the cytoplasm. Double staining of syntaxin-2 and septin-2 revealed a colocalization on the same vesicles. Lactoferrin and α-amylase served as a marker for secretory vesicles and were labeled positively together with syntaxin-2 and septin-2 in double-staining procedures. Cytoskeletal components such as actin, myosin II, cofilin, and profilin are concentrated at the apical plasma membrane of acinar submandibular glands. These observations complement the understanding of the complex exocytosis mechanisms.  相似文献   

16.
We examined the development of serous (poison) cutaneous glands in larval and juvenile Scinax nasica (Hylidae) at the ultrastructural level. We describe the biosynthesis and maturation of the cutaneous poison in comparison with the corresponding processes in representatives of Discoglossidae, Leptodactylidae, Pelobatidae and Pipidae. Serous biosynthesis in S. nasica starts in discrete adenoblasts and continues in the syncytial secretory unit. Biosynthetic processes involve rough endoplasmic reticulum and the Golgi apparatus, that releases membrane-bounded material, varying from fine grained to flocculent. During the post-Golgian secretory phase, this material undergoes initial maturation, and two products are formed: dense granules and larger vesicles holding a thin substance that will later be structured into a three-dimensional, honeycomb-like net. Both the secretory granules and vesicles change into glomerular-like aggregates of bowed, rod-shaped subunits (modules). In adult frogs, formation of dense granules is bypassed. The modular granule substructure seems to be related to the merocrine release of small amounts of poison, involved in regulating skin homeostasis. Comparison with maturational changes in larval glands of species representing four anuran families discloses similar patterns in the Leptodactylidae, but production of opaque homogeneous granules occurs in the Discoglossidae, clear vesicles in the Pelobatidae and aggregates of dense bars in the Pipidae.  相似文献   

17.
The albumen gland, a female accessory sex gland of pulmonate snails, produces the perivitelline fluid. The ultrastructure of the albumen glands of control and infected specimens of Lymnaea stagnalis and Biomphalaria glabrata was studied. The albumen gland of L. stagnalis contains two types of secretory cells--light (active) and dark (inactive)--and two types of supporting cells--centroacinar and myoepithelial. The secretory cells apparently represent two activity stages of one type of cell. The gland B. glabrata possesses only one secretory cell type, which alternates with one type of supporting cell. The albumen glands of L. stagnalis and B. glabrata infected at a juvenile stage were studied 4 and 14 weeks (L. stagnalis) and 4 and 9 weeks (B. glabrata) after exposure. After four weeks' infection, B. glabrata produced some egg masses, but in subsequent stages egg mass production completely coased. Infected L. stagnalis never produced eggs. B. glabrata was apparently infected at a "physiologically" more mature stage than L. stagnalis. The morphology of the albumen glands four weeks after exposure (the daughter sporocyst stage) is in agreement with this hypothesis. At this interval the secretory cells of L. stagnalis appeared to be much more severely affected (inactive Golgi bodies and rough endoplasmic reticulum, crinophagy of the secretory granules) than the cells of B. glabrata. In the later stages studied (shedding of the cercariae), the glands of both species appeared to be completely inactive (reduced height of the epithelium, inactive organelles, crinophagy, absence of secretory granules). At this stage of infection, daughter sporocysts containing cercaria embryos were seen in the connective tissue of the albumen gland of B. glabrata, but not of L. stagnalis. The results thus indicate that the development and synthetic activity of the albumen gland are seriously affected by infection. These processes are known to be under the endocrine control of the female gonadotrophic hormones. Since it has been established that these hormones are normally present in the haemolymph of infected snails, the findings can be explained by assuming that the parasite interferes in some way or other with the snail's endocrine system.  相似文献   

18.
The principal and accessory submandibular glands of the common vampire bat, Desmodus rotundus, were examined by electron microscopy. The secretory endpieces of the principal gland consist of serous tubules capped at their blind ends by mucous acini. The substructure of the mucous droplets and of the serous granules varies according to the mode of specimen preparation. With ferrocyanide-reduced osmium postfixation, the mucous droplets are moderately dense and homogeneous; the serous granules often have a polygonal outline and their matrix shows clefts in which bundles of wavy filaments may be present. With conventional osmium postfixation, the mucous droplets have a finely fibrillogranular matrix; the serous granules are homogeneously dense. Mucous cells additionally contain many small, dense granules that may be small peroxisomes, as well as aggregates of 10-nm cytofilaments. Intercalated duct cells are relatively unspecialized. Striated ducts are characterized by highly folded basal membranes and vertically oriented mitochondria. Luminal surfaces of all of the secretory and duct cells have numerous microvilli, culminating in a brush borderlike affair in the striated ducts. The accessory gland has secretory endpieces consisting of mucous acini with small mucous demilunes. The acinar mucous droplets contain a large dense region; the lucent portion has punctate densities. Demilune mucous droplets lack a dense region and consist of a light matrix in which fine fibrillogranular material is suspended. A ring of junctional cells, identifiable by their complex secretory granules, separates the mucous acini from the intercalated ducts. The intercalated ducts lack specialized structure. Striated ducts resemble their counterparts in the principal gland. As in the principal gland, all luminal surfaces are covered by an array of microvilli. At least some of the features of the principal and accessory submandibular glands of the vampire bat may be structural adaptations to the exigencies posed by the exclusively sanguivorous diet of these animals and its attendant extremely high intake of sodium chloride.  相似文献   

19.
The development of serous cutaneous glands is described in tadpoles of the leptodactylid frog Physalaemus biligonigerus , with attention to the cytodifferentiation processes of the secretory unit (adenomere). Secretory differentiation causes the adenomere to assume the structure of a syncytium and triggers biosynthesis of the serous product (poison), consisting of granules with peculiar repeating substructure. The secretory granules resemble glomerular-like aggregates of randomly orientated tubular subunits. This complex substructure derives from the rearrangement of the dense, compact material released by the Golgi apparatus in the form of small, membrane-bounded particles. Both early and advanced features of P. biligonigerus poison closely resemble those found during serous gland development in the Italian treefrog Hyla intermedia . The similar aspects described during serous biosynthesis in these leptodactylid and hylid frogs suggest they are phylogenetically informative. On the other hand, the peculiar features of their poisons may reflect the differential patternings of their secretory repertories along the divergent phylogenetic paths, which led these frogs to be currently included in different families.  相似文献   

20.
The distribution of blood group antigens ABH in submandibular glands was studied at light and electron microscopy levels by applying ImmunoGold Silver Staining (IGSS) and post-embedding ImmunoGold (IGS) methods, respectively. In IGSS treated samples, a cytoplasmic and a surface form of antigen localization were discernible in the glandular parenchyma. The former was restricted to most mucous cells and to scattered serous cells: A and B antigens were demonstrated in mucous cells of A and B type glands, while H antigen appeared in most mucous and occasional serous elements regardless of the blood type of donors. The latter appeared as a strong H reactivity on cell surfaces of serous acini and ducts regardless of the patient blood type. The IGS method was applied both on non-osmicated samples embedded in LR White resin and on osmicated, Epon embedded samples. In non-osmicated tissues, antigen labelling was revealed in secretory granules and cell surfaces. Positive secretory granules were found in most mucous cells and occasional serous, intercalated, and striated duct cells. A and B antigens weakly reacted in mucous cells of A and B type glands, respectively, while strong H reactivity was seen in mucous, serous, intercalated and striated duct cells of glands of all types. Surfaces labelled with H antigen were found on both lumenal and basolateral membranes of striated ducts in glands of all types. IGS method applied on osmicated, Epon embedded samples, selectively revealed blood group antigens in secretory granules of serous cells but not in the apical vesicles of striated ductal cells. Cell surfaces were completely unreactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号