首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dual wavelength microfluorometry was used to measure the cytoplasmic free calcium concentration [( Ca2+]in) in single cultured cells from ventricular myocytes of neonatal rats loaded with the indicator fura-2. At 2.5 nmol/l extracellular Ca2+ in the resting cells [Ca2+]in was between 80 and 110 nmol/l. Sometimes, spontaneous low-frequency (approximately 0.1 Hz) [Ca2+]in oscillations were observed. High-potassium depolarization led to a Ca2+-antagonists-sensitive rise of [Ca2+]in. Both caffeine++ (5-10 mmol/l) and thymol (lmmol/l) initialized transient increase of [Ca2+]in. Mechanisms of [Ca2+]in homeostasis in heart muscle cells were discussed.  相似文献   

2.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

3.
Double-barrel ion-sensitive microelectrodes were used to measure activity-related changes in extracellular pH (pHe), potassium and calcium concentration ([K+]e and [Ca2+]e) in the spinal dorsal horns of frogs. Repetitive stimulation (30-100 Hz) of the dorsal root evoked transient acidification in the lower dorsal horn by 0.25 pH units, which was accompanied by an increase in [K+]e by 4-5 mmol/l and a decrease in [Ca2+]e by 0.5 mmol/l. The pHe changes were found to have a typical depth profile and increased with the stimulation frequency, intensity and duration. The maximum of pHe changes was reached in 25-30 s of stimulation, and when stimulation continued further no greater pHe changes were achieved. Similarly as the K+ and Ca2+ transients, the pHe reached a ceiling level, which was 0.2-0.25 pH units more acid than the pH of the Ringer solution. The poststimulation K+ undershoot below the resting K+ level (3 mmol/l) was accompanied by an alkaline shift before the original pH base line. The rise time of the pHe changes was slower than that of [K+]e and [Ca2+]e changes. However, the redistribution of all the ionic changes had a similar time course. The clearance of changes in [K+]e and pHe was slowed by ouabain. The depression of the acid shift required higher concentrations of ouabain than the depression of the alkaline shifts. Acetazolamide, a carbonic anhydrase inhibitor, depressed the acid and enhanced the alkaline shift. Superfusion of the cord with elevated [K+]e was accompanied by a prompt and progressive acid shift, the lowering of [K+]e by an alkaline shift. The stimulus-evoked K+ increase and acid shift were depressed during the elevated [K+]e, while the alkaline shift was enhanced. Spontaneous elevations of [K+]e were accompanied by acid shifts of a similar time course. The results are discussed in terms of stimulus-evoked changes in extracellular strong ion differences [SID]e, and of their possible physiological significance.  相似文献   

4.
Ouabain (5 x 10(-8)-5 x 10(-4) M) was confirmed to cause a dose-dependent increase in [3H]acetylcholine ([3H]ACh) release, cytosolic free Ca2+ concentration ([Ca2+]i), and 22Na+ uptake in cerebrocortical synaptosomes of rats in the presence of extracellular Ca2+. Ouabain also caused a dose-dependent decrease in membrane potential. In a low-Na+ (10 mM) medium, ouabain failed to increase [3H]ACh release and [Ca2+]i. Tetrodotoxin (10(-6) M) had no effect on the ouabain-induced increase in both [3H]ACh release and [Ca2+]i but abolished the increase in 22Na+ uptake and partially inhibited the depolarizing effect. Verapamil (10(-6)-5 x 10(-4) M) inhibited the ouabain-induced increase in both [3H]ACh release and [Ca2+]i in a dose-dependent manner. Removal of extracellular Ca2+ abolished the effect of ouabain on [Ca2+]i but not on [3H]ACh release and 22Na+ uptake, regardless of the presence or absence of EGTA. In the absence of extracellular Ca2+, 10 mM Mg2+ blocked ouabain-induced [3H]ACh release, which was resistant to verapamil. These results suggest that ouabain can increase ACh release from synaptosomes without the preceding increases in intracellular Ca2+ and/or Na+ content. It seems likely that the removal of extracellular Ca2+ unmasks mechanisms of ouabain action different from those operating in the presence of Ca2+.  相似文献   

5.
The role of the electrogenic Na(+)-Ca(2+)-exchange mechanism in regulating the spike activity of the ureter was studied. The ureter cells were shown to be capable of generating action potentials (AP) in sodium-free Krebs solution. The time during which the spikes are generated is in exponential dependence on the concentration of calcium ions in the medium, [Ca2+]o within 2.5 to 15 mmol/l. Simultaneously with the generation of the spikes, accumulation of calcium in the muscles is observed, proportional to the increase of [Ca2+]o. The addition of as little as 20 mmol/l Na+ or Li+ ions into the solution restores the prolonged electrical activity of the ureter. Under these conditions, the decrease of intracellular Ca2+ within 5 min was more than two times larger as compared with that in sodium-free medium. Upon substituting Ba2+ ions for Ca2+ ions in Krebs solution AP are generated within an interval which was the longer the higher the Ba2+ concentration in the medium. Li+ ions can replace Na+ ions in maintaining AP and in extruding calcium from the cell. It is supposed that the generation of the stable spike activity of the ureter depends on the functioning of Na(+)-Ca(2+)-exchange mechanism.  相似文献   

6.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

7.
Calcium-dependent proliferation of NG108-15 neuroblastoma cells   总被引:2,自引:0,他引:2  
While there is increasing evidence that Ca2+ plays an important role in regulating cell proliferation, the precise mechanisms have not been clearly elucidated so far. In order to gain insight into how Ca2+ controls cell division, the rate of proliferation, cell volume, viability and attachment to the culture support were measured in NG108-15 neuroblastoma cells in the presence of various extracellular Ca2+ concentrations ([Ca2+]o). Culture medium [Ca2+]o was decreased from 1.8 mmol/l to various values down to 1 micromol/l with EGTA. The rate of cell proliferation was almost independent of [Ca2+]o between 1.8 mmol/l and 45 micromol/l. It was decreased by about 50% at 12 umol/l Ca2+ and was almost zero in the presence of 1 micromol/l Ca2+. As we hawe shown previously (Rouzaire-Dubois and Dubois 1998) long-term hypertonicity increased the cell volume and decreased the rate of proliferation. The effects of hypertonicity and decrease in [Ca2+]o on cell proliferation were synergistic and can be described by cell size-dependent and independent mechanisms, respectively. Relative to control conditions (1.8 mmol/l Ca2+), decreases in [Ca2+]o to 12 and 1 micromol/l decreased the cell viability to 76 and 52% and the cell adhesion to dishes to 16 and 3%, respectively. Altogether, these results indicate that the effects of alteration in [Ca2+]o and cell size on neuroblastoma cell proliferation are independent and act on different signalling pathways controlling cell division.  相似文献   

8.
Changes in extracellular Ca2+ concentration ([Ca2+]) were observed to affect 32Pi incorporation into polyphosphoinositides (PPI) and phosphatidic acid (PA) of human erythrocytes. A decrease of extracellular [Ca2+] from 1.5 mmol/l to 0.04 mumol/l increased the specific radioactivity (S.A.) of phosphatidylinositol 4,5-bisphosphate to 182% and that of phosphatidylinositol 4-phosphate to 120% of controls. Simultaneously S.A. and concentration of PA decreased. Further decrease of the extracellular [Ca2+] from 0.04 mumol/l to lower values as well as depletion of intracellular Ca2+ using ionophore A 23187 in Ca2(+)-free medium did not accelerate the PPI turnover rates any more. None of the above changes in extracellular [Ca2+] had any effect on the phosphorylation pattern of erythrocyte membrane proteins. Isolated erythrocyte membranes were incubated in the presence of [gamma-32P]ATP in media with various [Ca2+]. The decrease of [Ca2+] from 0.04 mumol/l (physiological concentration inside the cell) to lower values did not influence the turnover of PPI and PA monoester phosphates. Only after [Ca2+] was increased to 1-5 mumol/l an increase of PPI and PA turnover was observed. Our data suggest that the changes in extracellular [Ca2+] affect the metabolism of PPI and PA (despite the intracellular location of the latter) and may thus influence the properties of red cell plasma membrane.  相似文献   

9.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

10.
1. We studied the effect of verapamil, nitrendipine, 3',4'-dichlorobenzamil (DCB) and Cd2+ on the increase in cytosolic free Ca2+ ([Ca2+]c) and the rate of O2-uptake induced by depolarization of isolated rat cardiac myocytes with veratridine. 2. The degree of inhibition by the several drugs tested on the increase in [Ca2+]c and respiration was dependent on extracellular Ca2+, pH and Na+. 3. Low verapamil and nitrendipine concentrations (2.5 microM) were fully effective in Ca2+ channel blockade, as indicated from experiments with isoproterenol and in a low-Na+ medium. 4. A complete inhibition of veratridine-induced increase in [Ca2+]c and O2-uptake was attained with higher Ca2+ blocker concentrations (25-30 microM), implying that these processes depend to a major extent on some other Ca2+ transport system, probably Na+/Ca2+ exchange.  相似文献   

11.
Extracellular application of glutamate elicited cytoplasmic Ca2+ transients in freshly dissociated rat neurones of the dorsal cochlear nucleus (DCN) (identified as pyramidal cells) with half-maximal concentration of 513 micromol/l while saturating doses (5 mmol/l) of this neurotransmitter caused transients of 46.1 +/- 3.0 nmol/l on an average. The genesis of these glutamate-evoked Ca2+ transients required extracellular Ca2+. When [Mg2+]o was 1 mmol/l, the NMDA receptor antagonist AP5 (100 micromol/l) had no effects while 100 micromol/l CNQX and 10 micromol/l NBQX, inhibitors of the AMPA receptors, greatly decreased the glutamate-induced Ca2+ transients (a decrease of 92 and 57%, respectively). When facilitating the activation of the NMDA receptors (50 micromol/l glycine, 20 micromol/l [Mg2+]o) in the presence of 100 micromol/l CNQX, Ca2+ transients of 55.4 +/- 13.1 nmol/l could be produced. Block of the voltage-gated Ca2+ channels (200 micromol/l Cd2+) decreased the Ca2+ transients to approx. 50%. The data indicate that under our control experimental circumstances the glutamate-induced Ca2+ transients of the isolated DCN neurones are produced mainly by Ca2+ entry through voltage-gated Ca2+ channels and AMPA receptors. However, when the activation of the NMDA receptors may take place, these receptors also contribute significantly to the genesis of the glutamate-evoked cytoplasmic [Ca2+] elevations.  相似文献   

12.
The mechanisms by which an elevated KCl level and the K+-channel inhibitor 4-aminopyridine induce release of transmitter glutamate from guinea-pig cerebral cortical synaptosomes are contrasted. KCl at 30 mM caused an initial spike in the cytosolic free Ca2+ concentration ([Ca2+]c), followed by a partial recovery to a plateau 112 +/- 13 nM above the polarized control. The Ca2+-dependent release of endogenous glutamate, determined by continuous fluorimetry, was largely complete by 3 min, by which time 1.70 +/- 0.35 nmol/mg was released. [Ca2+]c elevation and glutamate release were both insensitive to tetrodotoxin. KCl-induced elevation in [Ca2+]c could be observed in both low-Na+ medium and in the presence of low concentrations of veratridine. 4-Aminopyridine at 1 mM increased [Ca2+]c by 143 +/- 18 nM to a plateau similar to that following 30 mM KCl. The initial rate of increase in [Ca2+]c following 4-aminopyridine administration was slower than that following 30 mM KCl, and a transient spike was less apparent. Consistent with this, the 4-aminopyridine-induced net uptake of 45Ca2+ is much lower than that following an elevated KCl level. 4-Aminopyridine induced the Ca2+-dependent release of glutamate, although with somewhat slower kinetics than that for KCl. The measured release was 0.81 nmol of glutamate/mg in the first 3 min of 4-aminopyridine action. In contrast to KCl, glutamate release and the increase in [Ca2+]c with 4-aminopyridine were almost entirely blocked by tetrodotoxin, a result indicating repetitive firing of Na+ channels. Basal [Ca2+]c and glutamate release from polarized synaptosomes were also significantly lowered by tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Effects of different concentrations of ionized calcium ([Ca2+]) in perfusion fluid and of the heart temperature on the systolic pressure (Psyst), heart rate (Vc) and their product as general index of the heart mechanical activity (HMA) of the rat isovolumetrically contracting isolated heart preparations were examined in condition of retrograde perfusion at constant volume with a modified Krebs-Heseleit buffer. An increase of [Ca2+] from 0.62 to 2.5 mM (mmol/l) in the normothermia (38 degrees C) augments Psyst and HMA. Heart rate does not change. An increase of [Ca2+] from 0.62 to 4.5 mM at 20 degrees C augments Vc and HMA. An increase [Ca2+] at 15-11 degrees C decreases psyst and HMA. [Ca2+] does not affect the temperature of the heart arrest.  相似文献   

14.
The effects of divalent cations on voltage-activated Ca2+ channels and depolarization-evoked cytoplasmic [Ca2+] elevations were studied in pyramidal neurones isolated from the dorsal cochlear nucleus of the rat. Ca2+ currents were recorded using the whole-cell configuration of the patch-clamp technique. 10 micromol x l(-1) Cd2+ exerted a greater blocking effect on the high-voltage activated (HVA) currents than on the low-voltage activated (LVA) ones (decrease to 26.6+/-2.5% and to 87.8+/-2.1%, respectively). The blocking effect of 200 micromol x l(-1) Cd2+ was more pronounced and the difference between the effect on the HVA and LVA currents became smaller (decrease to 11.7+/-2.1% and to 32.4+/-2.7%, respectively). 200 micromol x l(-1) Ni2+ reduced the LVA component more effectively (to 77.6+/-5.4%) than the HVA one (to 86.9+/-2.6%). Cytoplasmic [Ca2+] changes were measured applying a fluorimetric technique (Fura-2). 10 micromol x l(-1) Cd2+ decreased the peak values of 50 mmol x l(-1) K+ depolarization-induced [Ca2]+i transients to 30.4+/-1.4% while 200 micromol x l(-1) Cd2+ caused a drop to 2.5+/-0.2%. 200 micromol x l(-1) Ni2+ decreased the peak of the transients to 69.6+/-2.9%. Comparison of the blocking effects of divalent cations on Ca2+ currents and [Ca2+]i transients supports further the conclusion that the depolarization-induced [Ca2+]i changes are produced mainly by the activation of the HVA Ca2+ channels.  相似文献   

15.
Deregulation of the intracellular Ca2+ homeostasis by NMDA receptor activation leads to neuronal cell death. Induction of the mitochondrial permeability transition pore (MPT) by Ca2+ is a critical event in mediating cell death. In this study, we used fluorescent Ca2+ indicators to investigate the effect of high concentrations of NMDA on cytosolic and mitochondrial Ca2+ concentrations ([Ca2+]c and [Ca2+]m, respectively) in cultured striatal neurons. Exposure to NMDA resulted in an immediate, sustained increase in [Ca2+]c followed by a secondary increase in [Ca2+]c. This second increase of [Ca2+]c was prevented by pretreatment with N-methyl-valine-4-cyclosporin (NMV-Cys). Exposure of neurons to NMDA also resulted in an increase in [Ca2+]m that was followed by a precipitous decrease in the rhod-2 signal. This decrease followed the time frame of the secondary increase in [Ca2+]c. Preincubation of the neurons with NMV-Cys prevented the decrease in rhod-2 fluorescence. These dynamic changes in the rhod-2 signal and [Ca2+]m in response to NMDA were confirmed by using confocal microscopy. The presented results indicate that MPT can be detected in living neurons using fluorescent Ca2+ indicators, which would allow the study of the physiological role of MPT in cell death.  相似文献   

16.
The distribution of intracellular free calcium ions ([Ca2+]i) was measured in pollen tubes of Lilium longiflorum using video imaging microscopy and the calcium sensitive indicators fura-2 and quin-2. The mean [Ca2+]i in growing pollen tubes measured with fura-2 shows a maximum of 1.7 to 2.6 microM in the tube tip and decreases almost exponentially to 60 to 100 nM at 100 microns behind the tip. Using quin-2, the maximum [Ca2+]i was also found in the tube tip but with a lower Ca2+ concentration, namely 1 microM. Addition of the calcium channel blocker La3+ caused a decrease of the [Ca2+]i maximum in the tube tip, indicating a heterogeneous distribution of Ca2+ channels along the plasma membrane of pollen tubes. The [Ca2+]i increased after addition of vanadate or compound 48/80. This suggests an involvement of a calmodulin-dependent Ca2+ pump in generation of the Ca2+ gradient in lily pollen tubes. The high [Ca2+]i found in the tube tip with fura-2 seems to indicate the real Ca2+ concentration and is probably responsible for vesicle fusion, fragmentation of actin filaments, and inhibition of cytoplasmic streaming.  相似文献   

17.
Exposure of cerebellar granule neurones in 25 mm KCl HEPES-containing Locke's buffer (pH 7.4) to 50-100 microm SIN-1 during 2 h decreased the steady-state free cytosolic Ca2+ concentration ([Ca2+]i) from 168 +/- 33 nm to 60 +/- 10 nm, whereas exposure to > or = 0.3 mm SIN-1 produced biphasic kinetics: (i) decrease of [Ca2+]i during the first 30 min, reaching a limiting value of 75 +/- 10 nm (due to inactivation of L-type Ca2+ channels) and (ii) a delayed increase of [Ca2+]i at longer exposures, which correlated with SIN-1-induced necrotic cell death. Both effects of SIN-1 on [Ca2+]i are blocked by superoxide dismutase plus catalase and by Mn(III)tetrakis(4-benzoic acid)porphyrin chloride. Supplementation of Locke's buffer with catalase before addition of 0.5-1 mm SIN-1 had no effect on the decrease of [Ca2+]i but further delayed and attenuated the increase of [Ca2+]i observed after 60-120 min exposure to SIN-1 and also protected against SIN-1-induced necrotic cell death. alpha-Tocopherol, the potent NMDA receptor antagonist (+)-MK-801 and the N- and P-type Ca2+ channels blocker omega-conotoxin MVIIC had no effect on the alterations of [Ca2+]i upon exposure to SIN-1. However, inhibition of the plasma membrane Ca2+ ATPase can account for the increase of [Ca2+]i observed after 60-120 min exposure to 0.5-1 mm SIN-1. It is concluded that L-type Ca2+ channels are a primary target of SIN-1-induced extracellular nitrosative/oxidative stress, being inactivated by chronic exposure to fluxes of peroxynitrite of 0.5-1 microm/min, while higher concentrations of peroxynitrite and hydrogen peroxide are required for the inhibition of the plasma membrane Ca2+ ATPase and induction of necrotic cell death, respectively.  相似文献   

18.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

19.
Human interferon (IFN) stimulates a 1.5- to 1.7-fold transient increase in the concentration of cytoplasmic-free calcium ion ([Ca2+]i) within 10-20 s upon exposure of RPMI-4788 cells to IFN. This early event of IFN-induced [Ca2+]i mobilization was measurable by loading the cells with Fura-2AM, a fluorescent Ca2+ indicator. The mobilization induced by IFN-beta or IFN-gamma was dependent on the concentration of each IFN. The increased [Ca2+]i gradually returned to its resting level within 60 s. The addition of EGTA (0.5-10 mM) to medium induced a marked decrease in the amount of [Ca2+]i mobilized by IFN-beta and a partial decrease by IFN-gamma. This finding suggests that the mechanisms of [Ca2+]i mobilization by IFN-beta and IFN-gamma might be different. While IFN-beta-induced mobilization may be mainly from an influx of the extracellular calcium ion ([Ca2+]o), IFN-gamma-induced mobilization may be a summation of an influx of [Ca2+]o and a release from intracellular Ca2+ stores.  相似文献   

20.
三羟异黄酮对豚鼠心室肌细胞内游离钙浓度的影响   总被引:3,自引:0,他引:3  
Ji ES  Wang C  He RR 《生理学报》2004,56(2):204-209
用激光共聚焦显微镜观察研究三羟异黄酮(genistein,GST)对豚鼠心室肌细胞内游离钙浓度([Ca^2 ]i)的影响。结果用相对荧光强度(FI-F0/FX0,%)表示。实验结果显示,在正常台氏液、无钙台氏液和正常台氏液中加入3mmol/L EGTA后,GST(10~40μmol/L)浓度依赖性地降低细胞内钙浓度。蛋白酪氨酸磷酸酶抑制剂正钒酸钠(sodium orthovanadate)和L-型Ca^2 通道激动剂Bay K8644可部分抑制正常台氏液时GST的效应。当细胞外液钙浓度由1mmol/L增加到10mmol/L而诱发心室肌细胞钙超载时,部分心室肌细胞产生可传播的钙波,GST(40μmol/L)可降低钙波的传播速度和持续时间,最终阻断钙波。以上结果提示,GST降低心室肌细胞内游离钙浓度,此作用与其抑制电压依赖性Ca^2 通道、减弱酪氨酸激酶抑制和豚鼠心室肌细胞肌浆网内钙释放有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号