首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By incorporating carbamate bond(s) into a cytolytic peptide, novel pseudopeptides with potent antibacterial activity and low hemolytic activity were synthesized. Circular dichroism spectra suggested that the incorporation of carbamate bond(s) decrease the alpha helical conformation of the peptide in lipid membrane circumstances, which must be regarded as a major factor for the separation of antibacterial activity from cytotoxic activity for mammalian cell. Experiments in which dye was released from vesicles indicated that the potent antibacterial activity and low hemolytic activity of the pseudopeptides must be due to their great lipid membrane selectivity. The present result suggest that backbone modifications can be a great tool for developing pseudopeptides with improved biological activity and bioavailability from cytolytic peptides.  相似文献   

2.
By the introduction of various amide surrogates, novel pseudopeptides corresponding to a membrane active depsipeptide were synthesized and their native characteristics compared with that of the peptide. The pseudopeptides had more resistance to serum proteases than the peptide and similar antimicrobial activities to that of the peptide without hemolytic activity. The pseudopeptides like the peptide were active against current drug resistant fungi and pathogenic fungi isolated from patients, and also had a strong synergism with current antifungal drugs against Candida albicans. The leakage assay suggested that the pseudopeptides also acted on the lipid membrane of pathogenic cells. These results indicated that the novel pseudopeptides had advantages over the peptide as a candidate for a novel antifungal drug and backbone modifications can be a tool in the development of a novel antifungal agent from membrane-active peptides isolated from natural sources or chemically synthesized.  相似文献   

3.
All life forms are equipped with rapidly acting, evolutionally conserved components of an innate immune defense system that consists of a group of unique and diverse molecules known as host defense peptides (HDPs). A Systematic and Modular Modification and Deletion (SMMD) approach was followed to analyse the structural requirement of B1CTcu5, a brevinin antibacterial peptide amide identified from the skin secretion of frog Clinotarsus curtipes, India, to show antibacterial activity and to explore the active core region. Seventeen SMMD-B1CTcu5 analogs were designed and synthesised by C and N-terminal amino acid substitution or deletion. Enhancement in cationicity by N-terminal Lys/Arg substitution or hydrophobicity by Trp substitution produced no drastic change in bactericidal nature against selected bacterial strains except S. aureus. But the sequential removal of N-terminal amino acids had a negative effect on bactericidal potency. Analog B1CTcu5-LIAG obtained by the removal of four N-terminal amino acids displayed bactericidal effect comparable to, or in excess of, the parent peptide with reduced hemolytic character. Its higher activity was well correlated with the improved inner membrane permeabilisation capacity. This region may act as the active core of B1CTcu5. Presence of C-terminal disulphide bond was not a necessary condition to display antibacterial activity but helped to promote hemolytic nature. Removal of the C-terminal rana box region drastically reduced antibacterial and hemolytic activity of the peptide, showing that this region is important for membrane targeting. The bactericidal potency of the D-peptide (DB1CTcu5) helped to rule out the stereospecific interaction with the bacterial membrane. Our data suggests that both the C and N-terminal regions are necessary for bactericidal activity, even though the active core region is located near the N-terminal of B1CTcu5. A judicious modification at the N-terminal region may produce a short SMMD analog with enhanced bactericidal activity and low toxicity against eukaryotic cells.  相似文献   

4.
Pseudopeptide chemistry is gaining ground in the field of synthetic vaccine development. We have previously demonstrated the potential scope of introducing reduced amide peptide bond isosters in a site-directed design for obtaining structurally modified probes able to induce malaria infection-neutralizing antibodies derived from the MSP-1 antigen. This work reports the functional properties of polyclonal and monoclonal antibodies induced by site-directed designed MSP-2 N-terminus pseudopeptides and their capacity for antibody isotype switching in in vitro immunization. Structural properties of the native peptide and its pseudopeptide analogs are discussed within the context of these novel pseudopeptides' induced monoclonal antibody functional and physical-chemical properties.  相似文献   

5.
Solid-phase synthesis was used for the preparation of pyroglutamyl-histidyl-p-nitrophenylalanyl-phenylalanyl-alanyl-leucine amide (I) and glycyl-glycyl-histidyl-p-nitrophenylalanyl-phenylalanyl-alanyl-leucine amide (II), two water-soluble and sensitive chromophoric substrates of chicken pepsin, hog pepsin A, and bovine spleen cathepsin D. The kinetic constants of hydrolysis of the p-nitrophenylalanyl-phenylalanyl bond of the substrates were measured by difference spectrophotometry at 308 nm (Δ? = 860 m?1 cm?1) and by ninhydrin colorimetry (substrate I, ?570 = 2.31 × 104m?1 cm?1). The pH optimum of cleavage is 5 for the pepsins and 3.7 for cathepsin D. Since all three proteinases still have a significant activity at pH 5.5–6 a new, simple assay was designed for submicrogram quantities of pepsins in the presence of pepsinogens without interference of the latter. The method is particularly suitable for the analyses of the zymogen activation mixtures.  相似文献   

6.
Yang L  Zhang J  Ho B  Ding JL 《PloS one》2011,6(5):e19647

Background

M-ficolin, a pathogen recognition molecule in the innate immune system, binds sugar residues including N-acetyl-D-glucosamine (GlcNAc), which is displayed on invading microbes and on apoptotic cells. The cis and trans Asp282-Cys283 peptide bond in the M-ficolin, which was found to occur at neutral and acidic pH in crystal structures, has been suggested to represent binding and non-binding activity, respectively. A detailed understanding of the pH-dependent conformational changes in M-ficolin and pH-mediated discrimination mechanism of GlcNAc-binding activity are crucial to both immune-surveillance and clearance of apoptotic cells.

Methodology/Principal Findings

By immunodetection analysis, we found that the pH-sensitive binding of GlcNAc is regulated by a conformational equilibrium between the active and inactive states of M-ficolin. We performed constant pH molecular dynamics (MD) simulation at a series of pH values to explore the pH effect on the cis-trans isomerization of the Asp282-Cys283 peptide bond in the M-ficolin fibrinogen-like domain (FBG). Analysis of the hydrogen bond occupancy of wild type FBG compared with three His mutants (H251A, H284A and H297A) corroborates that His284 is indispensible for pH-dependent binding. H251A formed new but weaker hydrogen bonds with GlcNAc. His297, unlike the other two His mutants, is more dependent on the solution pH and also contributes to cis-trans isomerization of the Asp282-Cys283 peptide bond in weak basic solution.

Conclusions/Significance

Constant pH MD simulation indicated that the cis active isomer of Asp282-Cys283 peptide bond was predominant around neutral pH while the trans bond gradually prevailed towards acidic environment. The protonation of His284 was found to be associated with the trans-to-cis isomerization of Asp282-Cys283 peptide bond which dominantly regulates the GlcNAc binding. Our MD simulation approach provides an insight into the pH-sensitive proteins and hence, ligand binding activity.  相似文献   

7.
The peptide bond in the 4-5 position of the cyclic and linear enkephalin analogs H-Tyr-cyclo[-D-Lys-Gly-Phe-L(or D)-Leu-] and H-Tyr-D-Ala-Gly-Phe-L(or D)-Leu-OH was replaced by a thiomethylene ether linkage. Each of the configurational isomers of the cyclic pseudopeptide H-Tyr-cyclo[-D-Lys-Gly-Phe psi [CH2S]L(or D)-Leu-] showed high potency in both the guinea pig ileum and the mouse vas deferens assay and, therefore, had no preference for either mu- or delta-opioid receptors, in contrast to the cyclic parent peptides H-Tyr-cyclo[-D-Lys-Gly-Phe-L(or D)-Leu-] which are mu-receptor selective. The loss of selectivity observed with the cyclic pseudopeptides may be due to the greater flexibility of their 18-membered ring structures as a consequence of the peptide bond substitution. The linear pseudopeptide analogs were both less potent and less delta-receptor selective than their parent compounds. These results indicate that thiomethylene ether peptide bond replacements can have a pronounced effect on the activity profile of peptide hormones and neurotransmitters.  相似文献   

8.
Hydrolyses of N-trans-cinnamoylimidazole (1) and N-acetylimidazole (2) were accelerated by cyclohexaamylose (α-CA) and cycloheptaamylose (β-CA) at 25°C. The cleavage of the amide bond in 1 at pH 9.0 was accelerated by α-CA and β-CA by 28- and 38-fold, respectively, whereas the cleavage of the amide bond in 2 at pH 7.0 was accelerated by α-CA and β-CA by 50- and 28-fold, respectively. The β-CA-accelerated hydrolysis of 1 proceeded via binding, acylation of β-CA, and deacylation of β-CA trans-cinnamate, which is consistent with the pathway used by serine proteases. The deuterium oxide solvent isotope effects for acylation and deacylation steps indicate nucleophilic attack in acylation and general basic attack in deacylation. The present finding of the acceleration by cycloamyloses in the cleavages of amide bonds in 1 and 2 indicates that cycloamyloses are an excellent model for hydrolytic enzymes.  相似文献   

9.
We have investigated the conformational effects of modifying the amide group in model dipeptides. The N-methyl amide ψ[CO-NMe], N-hydroxy amide ψ[CO-N(OH)], N-amino amide ψ[ CO-N (NH2)], retro amide ψ[ NH-CO], reduced amide in the neutral ψ[CH2-NH] and protonated ψ[CH2-N + H2] state, and hydrazide ψ[CO-NH-NH] have been introduced as surrogates of the amide link in pseudopeptide derivatives of the Pro-Gly or Ala-Gly model dipeptides protected on both termini by an amide group. These compounds have been studied in solution by proton nmr and ir spectroscopy, and in the solid state by x-ray diffraction, giving an extended data set of experimental structural and conformational information on pseudopeptide sequences. The conformational effects depend both on the nature and the position of the modified amide link. Some modifications appear to have no intrinsic conformational induction (N-amino and retro amide), but destabilize any local folded structure by hydrogen-bond breaking. Because of the formation of strong intramolecular interactions, others are capable of stabilizing a β-turn (for example protonated reduced amide), or of inducing a particular local conformation such as a β- or γ-like turn (for example N-hydroxy amide). The particular geometry of the cis N-methyl amide and of the “hydrazino” proline favors the formation of a sharp turn of the main chain. All these structural data are of interest to the design of bioactive peptide mimics. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
An nmr spectral comparison of a model cyclic pentapeptide cyclo(Gly-Pro-Gly-D-Phe-Pro) with an analogous pseudopeptide has been made. The pseudopeptide contains a ψ[CH2S] amide bond replacement at the only amide linkage that, in the model, is not involved in an intramolecular hydrogen bond. Both proton and carbon-13 nmr spectral evidence confirms the retention of β- and γ-turns in the pseudopeptide in chloroform. Characteristic chemical shifts, temperature dependence, and glycine α-resonances support this interpretation. However, evidence of a more flexible conformation involving cistrans proline isomerism is seen on addition of dimethylsulfoxide.  相似文献   

11.
The wound environment is characterized by physiological pH changes. Proteolysis of thrombin by wound-derived proteases, such as neutrophil elastase, generates antimicrobial thrombin-derived C-terminal peptides (TCPs), such as HVF18 (HVFRLKKWIQKVIDQFGE). Presence of such TCPs in human wound fluids in vivo, as well as the occurrence of an evolutionarily conserved His residue in the primary amino acid sequence of TCPs, prompted us to investigate the pH-dependent antibacterial action of HVF18, as well as of the prototypic GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE). We show that protonation of this His residue at pH 5.5 increases the antibacterial activity of both TCPs against Gram-negative Escherichia coli by membrane disruption. Physiological salt level (150 mM NaCl) augments antibacterial activity of GKY25 but diminishes for the shorter HVF18. Replacing His with Leu or Ser in GKY25 abolishes the His protonation-dependent increase in antibacterial activity at pH 5.5, whereas substitution with Lys maintains activity at neutral (pH 7.4) and acidic pH. Interestingly, both TCPs display decreased binding affinities to human CD14 with decreasing pH, suggesting a likely switch in mode-of-action, from anti-inflammatory at neutral pH to antibacterial at acidic pH. Together, the results demonstrate that apart from structural prerequisites such as peptide length, charge, and hydrophobicity, the evolutionarily conserved His residue of TCPs influences their antibacterial effects and reveals a previously unknown aspect of TCPs biological action.  相似文献   

12.
The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-221–40 peptide primary structure’s genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main agent causing malaria), structurally defined probes based on non-natural peptide-bond isosteres were thus designed. Thus, two peptide mimetics were obtained (so-called reduced amide pseudopeptides), in which naturally made amide bonds of the 30FIN32-binding motif of MSA-2 were replaced with ψ–[CH2–NH] methylene amide isostere bonds, one between the F–I and the second between I–N amino acid pairs, respectively, coded as ψ-128 ψ-130. These peptide mimetics were used to produce poly- and monoclonal antibodies in Aotus monkeys and BALB/c mice. Parent reactive mice-derived IgM isotype cell clones were induced to Ig isotype switching to IgG sub-classes by controlled in vitro immunization experiments. These mature isotype immunoglobulins revealed a novel epitope in the MSA-225–32 antigen and two polypeptides of rodent malaria species. Also, these antibodies’ functional activity against malaria was tested by in vitro assays, demonstrating high efficacy in controlling infection and evidencing neutralizing capacity for the rodent in vivo malaria infection. The neutralizing effect of antibodies induced by site-directed designed peptide mimetics on Plasmodium’s biological development make these pseudopeptides a valuable tool for future development of immunoprophylactic strategies for controlling malarial infection.  相似文献   

13.
We report a dimerization strategy to enhance the antibacterial potency of an otherwise weak cationic amphiphilic polyproline helical (CAPH) peptide. Overall, the dimeric CAPHs were more active against Escherichia coli and Staphylococcus aureus than the monomeric counterpart, reaching up to a 60-fold increase in potency. At their minimum inhibitory concentration (MIC), the dimeric peptides demonstrated no hemolytic activity or bacterial membrane disruption as monitored by β-galactosidase release in E. coli. At higher concentrations the dimeric agents were found to induce β-galactosidase release, but maintained negligible hemolytic activity, pointing to a potential shift in the mechanism of action at higher concentrations. Thus, discontinuous dimerization of an unnatural proline-rich peptide was a successful strategy to create potent de novo antibacterial peptides without membrane lysis.  相似文献   

14.
Two series of thiazole derivatives containing amide skeleton were synthesized and developed as potent Escherichia coli β-ketoacyl-(acyl-carrier-protein) synthase III (ecKAS III) inhibitors. All the 24 new synthesized compounds were assayed for antibacterial activity against the respective Gram-negative and Gram-positive bacterial strains, including E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. In which, 10 compounds with broad-spectrum antibacterial activities were further tested for their ecKAS III inhibitory activity. Last, we have successfully found that compound 4e showed both the promising broad antibacterial activity with MIC of 1.56–6.25 μg/mL against the representative bacterial stains, and also processed the most potent ecKAS III inhibitory activity with IC50 of 5.3 μM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and ecKAS III (PDB code: 1hnj) protein.  相似文献   

15.
Oligochitosan samples varying in molecular weight (Mw) and having narrow polydispersities were prepared by means of depolymerization of chitosan in hydrochloric acid, and their antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) was measured at pH values 5.5-8.0. The antibacterial testing of oligochitosans obtained showed that oligochitosans having Mw in the range of 0.73-20.0 kDa could be used both at slightly acidic and neutral pH values, and that the activity against MRSA remained moderate for oligochitosan samples having Mw about 3-5 kDa even at slightly basic pH values. The self-assembling behavior of oligochitosan macromolecules in the dilute solution at various pH values as a function of chain length was investigated. At first it was shown that oligochitosans formed supramolecular aggregates in dilute solutions below the critical pH value 6.5. Despite the aggregation phenomenon, the formation of nano-sized aggregates did not prevent oligochitosan from demonstrating the bactiostatic activity.  相似文献   

16.
A series of benzyl-[3-(benzylamino-methyl)-cyclohexylmethyl]-amine derivatives with different substitution pattern on the aromatic ring have been prepared and evaluated for their antibacterial activity against Gram-positive and Gram-negative bacterial strains. Most of the compounds exhibit potent activity against Pseudomonas aeruginosa and Staphylococcus epidermidis while compounds 6l and 6m showed antibacterial activity against all the four bacterial strains with MIC values ranging from 0.002 to 0.016 μg/mL and no hemolytic activity up to 512 μg/mL in mammalian erythrocytes was observed.  相似文献   

17.
Capillary zone electrophoresis (CZE) was used for determination of dissociation constant of phosphinate group in phosphinic pseudopeptides, i.e. peptides where one peptide bond is substituted by phosphinic acid moiety -PO2--CH2-. The dissociation constants were determined for a set of newly synthesized pseudopeptides derived from a structure N-Ac-Val-Ala(psi)(PO2--CH2)Leu-His-NH2 by nonlinear regression of experimentally measured pH dependence of their effective electrophoretic mobilities. CZE experiments were carried out in Tris-phosphate background electrolytes in the pH range 1.4-3.2. The pseudopeptides were synthesized as a mixture of four diastereomers, the separation of which was achieved in most cases. Moreover, differences of the effective mobilities of the pseudopeptide diastereomers enabled simultaneous determination of the dissociation constant of their phosphinate group without necessity of previous isolation of individual isomers.  相似文献   

18.
Group 1B human pancreatic secretory phospholipase A2 (hp-sPLA2), a digestive enzyme synthesized by pancreatic acinar cells and present in pancreatic juice, do not have antibacterial activity towards Escherichia coli. Our earlier results suggest that the N-terminal first ten amino acid residues of hp-sPLA2 constitute major portion of the membrane binding domain of full-length enzyme and is responsible for the precise orientation of enzyme on the membrane surface by inserting into the lipid bilayers (Pande et al. (2006) Biochemistry, 45,12436–12447). In this study we report the antibacterial properties of a peptide (AVWQFRKMIK-CONH2; N10 peptide), which corresponds to the N-terminal first ten amino acid residues of hp-sPLA2, against E. coli. Full-length hp-sPLA2, which contains this peptide sequence as N-terminal α-helix, did not showed detectable antibacterial activity. Presence of physiological concentration of salt or preincubation of N10 peptide with soluble anionic polymer inhibits the antibacterial activity indicating the importance of electrostatic interaction in binding of peptide to bacterial membrane. Addition of peptide resulted in destabilization of outer as well as inner cytoplasmic membrane of E. coli suggesting bacterial membranes to be the main target of action. N10 peptide exhibits strong synergism with lysozyme and potentiates the antibacterial activity of lysozyme. The peptide was inactive against human erythrocyte. Our result shows for the first time that a peptide fragment of hp-sPLA2 possesses antibacterial activity towards E. coli and at subinhibitory concentration and can potentiate the antibacterial activity of membrane active enzyme. These observations suggest that N10 peptide may play an important role in the antimicrobial activity of pancreatic juice.  相似文献   

19.
Inhibition of amyloid β peptide (Aβ) aggregation is a potential therapeutic approach to treat Alzheimer’s disease. We report that an O-acyl isopeptide of Aβ1–42 (1) containing an ester bond at the Gly25-Ser26 moiety inhibits Aβ1–42 fibril formation at equimolar ratio. Inhibitory activity was retained by an N-Me-β-Ala26 derivative (2), in which the ester of 1 was replaced with N-methyl amide to improve chemical stability at physiological pH. Inhibition was verified by fluorescence anisotropy, Western blot, and atomic force microscopy. This report suggests a new class of Aβ aggregation inhibitor based on modification of Aβ1–42 at Gly25-Ser26.  相似文献   

20.
Semi-synthetic water-soluble analogs were synthesized from nocathiacin I through the formation of a versatile intermediate nocathiacin amine 5, and subsequent transformation via reductive amination, acylation or urea formation. Several of the novel analogs displayed much improved aqueous solubility over 1, while retained antibacterial activity. Compound 15 and 16 from the amide series, demonstrated excellent in vitro and in vivo antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号