首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the strength modulation and frequency tuning of Fano resonance by employing a graphene nanodimer formed by two coplanar perpendicular nanostrips with different dimensions. The Fano resonance is induced by destructive interference between the bright dipole mode of a short nanostrip and the dark quadrupole mode of a long nanostrip. The strength, line width, and resonance frequency of the Fano resonance can be actively modulated by changing the spatial separation of those two graphene nanostrips and the Fermi energy of the graphene nanodimer, respectively, without re-fabricating the nanostructures. The tuning of the strength and resonance frequency can be attributed to the coupling strength and optical properties of graphene, respectively. Importantly, a figure of merit value as high as 39 is achieved in the proposed nanostructures. Our results may provide potential applications in optical switching and bio-chemical sensing.  相似文献   

2.
Yang  Sa  Zhou  Renlong  Liu  Dan  Lin  Qiawu  Li  Shuang 《Plasmonics (Norwell, Mass.)》2020,15(4):1103-1113
Plasmonics - We investigated the field enhancement and lifetime of tuning surface plasmon in zero-thickness nanostructured graphene patches. The graphene surface plasmon (GSP) resonance mechanism...  相似文献   

3.
We report a simple, rapid, and nondestructive approach for precise determination of the number of graphene layers by placing the graphene on top of an all dielectric metasurface. The all dielectric metasurface is constituted with a periodic lattice of a rectangular silicon bar and a silicon ring. Due to the destructive interference between the radiation losses from bar and ring resonators, Fano resonance with high quality (Q) factor has been achieved from the metasurface, and thus the strong light-graphene interaction on top of the structure is allowed. By placing single layer, bi-layer, and few layers graphene above the metasurface, we find that both the amplitude and wavelength of Fano resonance can be dramatically changed. And such changes are large enough to be detected by a Fourier transform infrared spectrometer (FTIR). As a result, the thickness of graphene can be simply determined by monitoring the Fano resonance and the corresponding figure-of-merit(FOM) is as large as 6.5.  相似文献   

4.
A log-periodic toothed nanoantenna based on graphene is proposed, and its multi-resonance properties with respect to the variations of the chemical potential are investigated. The field enhancement and radar cross-section of the antenna for different chemical potentials are calculated, and the effect of the chemical potential on the resonance frequency is analyzed. In addition, the dependence of the resonance frequency on the substrate is also discussed. It is shown that large modulation of resonance intensity in log-periodic toothed nanoantenna can be achieved via turning the chemical potential of graphene. The tunability of the resonant frequencies of the antenna can be used to broad tuning of spectral features. The property of tunable multi-resonant field enhancement has great prospect in the field of graphene-based broadband nanoantenna, which can be applied in non-linear spectroscopy, optical sensor, and near-field optical microscopy.  相似文献   

5.
Magnetic hot spots, which implies confinements and enhancements of magnetic fields, are demonstrated in graphene junctions (GJs) in the mid-infrared range. The appearance of magnetic hot spots in GJs comes from the conduction currents in the junction. In further, the extinction resonance peaks suffer blue shift, along with the increases in the magnetic fields inside junction area, when the junction width reduces. In opposite to the circumstances for electric field enhancements, neither magnetic field enhancements nor resonance frequency of GJs is perturbed by the intrinsic nonlocal electronic response of graphene. Such nonlocality immunized magnetic enhancement could be explained by the polarization dependent property of nonlocal effect.  相似文献   

6.
In this letter, a novel hybrid metamaterial consisting of periodic array of graphene nano-patch and gold split-ring resonator has been theoretically proposed to realize an active control of the electromagnetically induced transparency analog in the mid-infrared regime. A narrow transparency window occurs over a wide absorption band due to the coupling of the high-quality factor mode provided by graphene dipolar resonance and the low-quality factor mode of split-ring resonator magnetic resonance, which is interpreted in terms of the phase change and surface charge distribution. In addition to the obvious dependence of the spectral feature on the geometric parameters of the elements and the surrounding environmental dielectric constant, our proposed metamaterial shows great tunabilities to the transparency window by tuning the Fermi energy of the graphene nano-patch through electric gating and its electronic mobility without changing the geometric parameters. Furthermore, our proposed metamaterial combines low losses with very large group index associated with the resonance response in the transparency window, showing it suitable for slow light applications and nanophotonic devices for light filter and biosensing.  相似文献   

7.

Highly sensitive surface plasmon resonance (SPR) sensor consisting of Ag-Pt bimetallic films sandwiched with 2D materials black phosphorus (BP) and graphene over Pt layer in Kretschmann configuration is analyzed theoretically using the transfer matrix method. Numerical results show that upon suitable optimization of thickness of Ag-Pt layers and the number of layers of BP and graphene, sensitivity as high as 412°/RIU (degree/refractive index unit) can be achieved for p-polarized light of wavelength 633 nm. This performance can be tuned and controlled by changing the number of layers of BP and graphene. Furthermore, the addition of graphene and heterostructures of black phosphorus not only improved the sensitivity of the sensor but also kept the FWHM of the resonance curve much smaller than the conventional sensor utilizing Au as plasmonic metal and hence improved the resolution to a significant extent. We expect that this new proposed design will be useful for medical diagnosis, biomolecular detection, and chemical examination.

  相似文献   

8.
A tunable terahertz filter based on graphene plasmonic all-dielectric metasurfaces is proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. Especially, hybrid all-dielectric metasurfaces are used to make a whole single-sheet graphene forms two different conductivity patterns with the same gate voltage. The simulated results show that resonance wavelength is shifted significantly with the change of gate voltage. Besides, the transmittance spectra are also shifted with the change of the width of SiC, and the filter shows a polarization-dependent modulation property for the length and the width of SiC being 480 and 320 nm, respectively. In addition, the filter can be applied for refractive sensing because the transmittance spectra are shifted with the change of the background refractive index. The study could provide availability for versatile tunable terahertz graphene plasmonic metasurfaces.  相似文献   

9.
A particular interesting plasmonic system is that of metallic nanostructures interacting with metal films. As the localized surface plasmon resonance (LSPR) behavior of gold nanostructures (Au NPs) on the top of a gold thin film is exquisitely sensitive to the spacer distance of the film-Au NPs, we investigate in the present work the influence of a few-layered graphene spacer on the LSPR behavior of the NPs. The idea is to evidence the role of few-layered graphene as one of the thinnest possible spacer. We first show that the coupling to the Au film induces a strong lowering at around 507 nm and sharpening of the main LSPR of the Au NPs. Moreover, a blue shift in the main LSP resonance of about 13 nm is observed in the presence of a few-layered graphene spacer when compared to the case where gold nanostructures are directly linked to a gold thin film. Numerical simulations suggest that this LSP mode is dipolar and that the hot spots of the electric field are pushed to the top corners of the NPs, which makes it very sensitive to surrounding medium optical index changes and thus appealing for sensing applications. A figure of merit of such a system (gold/graphene/Au NPs) is 2.8, as compared to 2.1 for gold/Au NPs. This represents a 33 % gain in sensitivity and opens-up new sensing strategies.  相似文献   

10.
Far-infrared part of electromagnetic spectrum and its technological details have been highly sought after due to its myriad applications including imaging, spectroscopy, industry control, and communication. However, lack of efficient components of electronic and photonic sources/detectors working in this particular spectrum has impeded its widespread application. One of the bottlenecks lies in the compact far-infrared polarization-sensitive resonator/modulator in compatible with pixel-detector for far-infrared spectroscopy. In this work, we demonstrate strong electric resonance response in perforated graphene sheet at this particular electromagnetic region. The results demonstrate inherently different natures for the strong electromagnetic response between graphene-based and metallic metamaterials. Unlike the metallic metamaterials relying on the geometrical inductance for magnetic response, the electric resonance caused by localized dipole/multipolar modes is found to be dominated in graphene and thus enabling sub-wavelength confinement of electromagnetic field. The Babinet’s principle is proposed to be applied for broadband far-infrared modulation and resonant filters design of graphene-based metamaterial. The active tunable electric resonance through electrostatic doping on the graphene-based patterns provides efficient route for compact biosensing, far-infrared imaging, and detection.  相似文献   

11.
Sun  Cheng  Wang  Xiaoqiu 《Plasmonics (Norwell, Mass.)》2017,12(4):1235-1243
Plasmonics - This work reports on a numerical simulation study regarding the systematic tuning of plasmonic resonance wavelength in the mid-infrared regime, by using composite arrays of graphene...  相似文献   

12.
Owing to its large surface-to-volume ratio and good biocompatibility, graphene has been identified as a highly promising candidate as the sensing layer for fiber optic sensors. In this paper, a graphene/Au-enhanced plastic clad silica (PCS) fiber optic surface plasmon resonance (SPR) sensor is presented. A sheet of graphene is employed as a sensing layer coated around the Au film on the PCS fiber surface. The PCS fiber is chosen to overcome the shortcomings of the structured microfibers and construct a more stable and reliable device. It is demonstrated that the introduction of graphene can enhance the intensity of the confined electric field surrounding the sensing layer, which results in a stronger light-matter interaction and thereby the improved sensitivity. The sensitivity of graphene-based fiber optic SPR sensor exhibits more than two times larger than that of the conventional gold film SPR fiber optic sensor. Furthermore, the dynamic response analyses reveal that the graphene/Au fiber optic SPR sensor exhibits a fast response (5 s response time) and excellent reusability (3.5% fluctuation) to the protein biomolecules. Such a graphene/Au fiber optic SPR sensor with high sensitivity and fast response shows a great promise for the future biochemical application.  相似文献   

13.
Plasmonics - We show performance enhancement of surface plasmon resonance (SPR)-based sensors using the nano-ribbons of 2D materials such as graphene and WSe2. 2D material-based structures are...  相似文献   

14.
Interest in graphene has been widely increasing since its discovery in 2004. Research on graphene for plasmonic applications has also boomed due to the high potential of these systems. In this article, we discuss the possible interaction between metallic NPs and graphene monolayer. We show how the contact between metallic NPs and graphene results in graphene doping. More importantly, we experimentally put into evidence the possible modulation of the plasmonic resonance of NPs by graphene doping. Understanding and evidencing this interaction is highly important both from a fundamental point of view and for specific applications such as active plasmonic devices.  相似文献   

15.
Plasmonics - In this paper, we study the optical properties and surface plasmon resonance of a bimetallic core-shell spherical nanoparticle exhibiting monolayer graphene coatings. The extinction...  相似文献   

16.
Plasmonics - In the present communication, a fiber optic biosensor based on surface plasmon resonance (SPR) phenomenon, having bilayers of Ag-Pt with graphene as a sensing layer, is presented....  相似文献   

17.
This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast. However, in a practical illustration of the new substrates properties, positively stained DNA is imaged across pristine graphene in striking contrast without the need of metal shadowing. We go onto discuss technical considerations and the potential applications of pristine graphene substrates as well as their ongoing development.  相似文献   

18.

Chikungunya virus has been discovered in about 60 countries of the world. It leads to joint pain, joint swelling, headache, muscle pain, and fatigue of the human body. In this work, a surface plasmon resonance (SPR)based sensor is developed to detect chikungunya virus through normal and infected platelets and plasma blood cells. The proposed SPR-based sensor uses silicon and graphene layers coated over the base of a glass prism sputtered with a silver layer. The graphene layer has the advantage of enhancing the biomolecules adsorption on the metal layer. The silicon layer between silver and graphene enhances the sensor performance. The number of graphene layers along with the thicknesses of silicon and silver layers is optimized to get the highest sensitivity of the detector. To investigate the effect of the light source wavelength, simulations are performed for four different wavelengths. The highest sensitivities exhibited by the SPR-based sensor are 393 and 160 deg/RIU for the platelets and plasma cells, respectively.

  相似文献   

19.
Heterogeneous photocatalysis using semiconductors and renewable solar energy has been regarded as one of the most promising processes to alleviate, and even solve, both the world crises of energy supply and environmental pollution. In the past few years, many encouraging achievements have been made in the research area of graphene‐based semiconductor photocatalysts. Among them, CdS/graphene nanocomposites have attracted extensive attention as an important kind of photocatalyst in chemical and material science, due to its superior photocatalytic activity and photostability under visible‐light irradiation. The aim here is to address the enhancement mechanism of the photocatalytic performance of CdS/graphene composite photocatalysts, and systematically summarize recent progress regarding the design and synthesis of CdS/graphene nanocomposites. These nanocomposites are promising for a great diversity of applications in visible‐light photocatalytic fields, including artificial photosynthetic systems (photocatalytic hydrogen production and CO2 reduction), environmental remediation, and organic photosynthesis. Special attention is given to the photocatalytic hydrogen production and pollutant photodegradation over CdS/graphene nanocomposite photocatalysts. Furthermore, perspectives on CdS/graphene‐based materials are discussed, including the various remaining challenges for large‐scale applications, identifying prospective areas for related research in this field.  相似文献   

20.
Liu  Huizhe  Sun  Song  Wu  Lin  Bai  Ping 《Plasmonics (Norwell, Mass.)》2014,9(4):845-850

In this paper, the optical near-field enhancement of graphene bowtie antennas is numerically investigated at terahertz frequencies using boundary element method. The enhanced field intensity at the gap region is a result of the mutual coupling between two triangular elements upon the excitation of graphene plasmons. Firstly, wide plasmon frequency tunability is demonstrated by changing the chemical potential of graphene without the need to alter the antenna geometry. Secondly, by varying the tip angle and radius of curvature of the graphene antennas, the field intensity enhancement at the gap center of the two-element antennas is systematically studied. It is found that graphene bowtie antennas with two round-cornered equilateral triangles have superior performance to other two-element antennas, such as ribbon pair, sharp-cornered bowtie, and disk pair antennas. Last but not least, by applying a moderate chemical potential of 0.4 eV to graphene bowtie antennas, we found that the field intensity enhancement at gap center is about 220 times as much as using gold of comparable sizes. In short, graphene bowtie antennas of rounded corners give rise to considerable near-field enhancement and are promising for a wide range of applications such as molecular sensing at terahertz frequencies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号