首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Na  Wang  Shutao  Cheng  Qi  Pang  Bo  Lv  Jiangtao 《Plasmonics (Norwell, Mass.)》2021,16(5):1567-1576

In the present work, a novel surface plasmon resonance (SPR) sensor consisting of the nickel (Ni) film with hybrid structure of blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs) is reported. By optimizing the thickness of Ni layer and BlueP/TMDCs, the maximum sensitivity with 270°/RIU for the Ni-BlueP/WS2 is achieved. Use of BlueP/TMDCs layer facilitates the sensitivity due to its high electron concentration, high mobility, optical, and electronic properties. Compared with the conventional Ni-based SPR sensor, the sensitivity of the proposed one is enhanced up to ~ 60.7%. We hope that the SPR sensor has potential application prospects in chemical detection, medical diagnostic, optical sensing, etc. due to its high sensitivity.

  相似文献   

2.
Wang  Jianshuai  Pei  Li  Wu  Liangying  Wang  Ji  Ruan  Zuliang  Zheng  Jingjing 《Plasmonics (Norwell, Mass.)》2020,15(2):327-333

A surface plasmon resonance (SPR) sensor based on a photonic crystal fiber (PCF) is proposed for low refractive index (RI) detection. The core of PCF is formed by two-layer air walls and either layer is composed of six identical sector rings with negative curvature. Plasmonic material gold (Au) is coated on the external cladding surface. Finite element method (FEM) is applied to investigate the performance of the SPR sensor. Results show that the sensor is independent of polarization due to the coincident coupling properties of the two polarized modes. Additionally, in low RI ranging from 1.20 to 1.33, the sensor keeps a high spectral sensitivity with an average value of 7738 nm/RIU. When RI varies from 1.32 to 1.33, the resolution reaches to its maximum of 8.3 × 10−6. The proposed sensor shows much significance in low RI detection, which is promising in real-time measurement for medical, water pollution, and humidity.

  相似文献   

3.

Highly sensitive surface plasmon resonance (SPR) sensor consisting of Ag-Pt bimetallic films sandwiched with 2D materials black phosphorus (BP) and graphene over Pt layer in Kretschmann configuration is analyzed theoretically using the transfer matrix method. Numerical results show that upon suitable optimization of thickness of Ag-Pt layers and the number of layers of BP and graphene, sensitivity as high as 412°/RIU (degree/refractive index unit) can be achieved for p-polarized light of wavelength 633 nm. This performance can be tuned and controlled by changing the number of layers of BP and graphene. Furthermore, the addition of graphene and heterostructures of black phosphorus not only improved the sensitivity of the sensor but also kept the FWHM of the resonance curve much smaller than the conventional sensor utilizing Au as plasmonic metal and hence improved the resolution to a significant extent. We expect that this new proposed design will be useful for medical diagnosis, biomolecular detection, and chemical examination.

  相似文献   

4.
We propose a surface plasmon resonance (SPR)-based refractive index sensor using gold-alumina grating over aluminum film for biosensing. Conventional SPR sensor based on gold grating exhibits broader SPR dips whereas that based on aluminum grating exhibits narrow reflection dip. A narrow reflection dip is desirable as it provides good resolution and improves the accuracy of measurement. Aluminum is less stable and generally is not preferred for an SPR-based sensor. It is more prone to being oxidized, which reduces the sensitivity and increases the width of the reflection dip of the sensor. While gold cannot provide narrow SPR reflection dips, but is used as an SPR active metal due to its more chemical stability. In order to improve the accuracy of gold grating-based sensor while taking care of oxidation problem of aluminum, in this paper, we propose a gold grating over aluminum film for SPR-based sensor and show that this configuration improves the sensitivity and the detection accuracy of the conventional sensor. Moreover, the oxidation problem is reduced to some extent as a part of aluminum is covered with gold. In order to completely avoid the oxidation of aluminum, we further propose to cover the exposed part of the aluminum with alumina and show that this configuration further improves the accuracy by reducing the width of the SPR reflection dip without affecting the sensitivity significantly. Numerical simulations show that sensitivity of proposed sensor is 270.33°/RIU with quality factor of more than 267.65 RIU?1.  相似文献   

5.
An investigation of the wavelength dependent extinction spectra of coated sphere with different core@shell compositions based on discrete dipole approximation technique has been presented in this paper. We have used combinations of A g, A u, and S i O 2 for this analysis. Specifically, we study the impact of spherical core-shell thickness on its surface plasmon resonance (SPR) peak positions and corresponding spectral widening in distinct regimes of the spectrum. We observe that SPR peak of core-shell nanoparticle(CSNP) can be tuned over the visible to near-infrared spectrum region by manipulating the core/shell ratio and composition of core and shell. Specifically, for dielectric@metal (core@shell) nanoparticle, SPR peak position shifted towards lower wavelength as we increase the shell thickness, which is opposite to the SPR behavior of metal@dielectric. The extinction spectrum shows linear relation between SPR position and thickness of the shell. Further, we observed two resonant peaks for the case of metal@metal CSNP. The SPR peak of Au@Ag (a eff 100 nm with shell thickness 8 nm) reveals two resonant peak corresponding to Au (594 nm) in red domain, while the peak in blue domain corresponds to Ag (402 nm). We also observe that optical resonance of CSNP can be tuned across the near-infrared region by changing the surrounding medium of higher refractive index. Further, near field pattern of core@shell geometry at resonance wavelength is also shown in the present study. We have also compared the numerical and analyticalmethod for smaller size CSNP with varying thickness and the results show good agreement.  相似文献   

6.
A large majority of surface plasmon resonance (SPR) sensors reported in the literature are designed to operate in the visible electromagnetic spectrum. However, the near-infrared, particularly at the telecommunications wavelength of 1550 nm, is also especially attractive for SPR sensing applications. In fact, SPR sensors operating in this region benefit from narrower resonance and deeper field penetration. In this paper, we report a theoretical and experimental study of an SPR sensor operating at a fixed wavelength of 1550 nm. The influence of the choice of metals and the interrogation methods on the sensitivity of the resulting SPR sensor is investigated. Two types of sensor chips (simple gold (Au) and bimetallic silver/Au structure) and three interrogation methods (monitoring of the position of the reflectivity minimum, the position of the centroid, and the intensity evolution of the reflectivity) are examined. We show that a refractive index resolution of 2.7?×?10?6 refractive index unit can be easily obtained, and with further optimization of the measurement system, the ultimate limit of detection is expected to be even lowered. Therefore, the approach discussed here already shows a promising potential for highly sensitive SPR sensors.  相似文献   

7.
We present a new approach to surface plasmon microscopy with high refractive index sensitivity and spatial resolution that is not limited by the propagation length of surface plasmons. It is based on a nanostructured metallic sensor surface supporting Bragg-scattered surface plasmons. We show that these non-propagating surface plasmon modes are excellently suited for spatially resolved observations of refractive index variations on the sensor surface owing to their highly confined field profile perpendicular to as well as parallel to the metal interface. The presented theoretical study reveals that this approach enables reaching similar refractive index sensitivity as regular surface plasmon resonance (SPR) microscopy and offers the advantage of improved spatial resolution when observing dielectric features with lateral size <10???m for the wavelength around 800?nm and gold as the SPR-active metal. This paper demonstrates the potential of Bragg-scattered surface plasmon microscopy for high-throughput SPR biosensing with high-density microarrays.  相似文献   

8.

The influence of TiO2 coating on resonant properties of gold nanoisland films deposited on silica substrates was studied numerically and in experiments. The model describing plasmonic properties of a metal truncated nanosphere placed on a substrate and covered by a thin dielectric layer has been developed. The model allows calculating a particle polarizability spectrum and, respectively, its surface plasmon resonance (SPR) wavelength for any given cover thickness, particle radius and truncation parameter, and dielectric functions of the particle, the substrate, the coating layer, and the surrounding medium. Dependence of the SPR position calculated for truncated gold nanospheres has coincided with the measured one for the gold nanoisland films covered with titania of different thicknesses. In the experiments, gold films with thickness of 5 nm were deposited on a silica glass substrate, annealed at 500 °C to form nanoislands of 20 nm in diameter, and covered with amorphous titania layers using atomic layer deposition technique. The resulting structures were characterized with scanning electron microscopy and optical absorption spectroscopy. The measured dependence of the SPR position on titania film thickness corresponded to the one calculated for truncated sphere-shaped nanoparticles with the truncation angle of ~50°. We demonstrated the possibility of tuning the SPR position within ~100 nm range by depositing to 30 nm thick titania layer.

  相似文献   

9.

Chikungunya virus has been discovered in about 60 countries of the world. It leads to joint pain, joint swelling, headache, muscle pain, and fatigue of the human body. In this work, a surface plasmon resonance (SPR)based sensor is developed to detect chikungunya virus through normal and infected platelets and plasma blood cells. The proposed SPR-based sensor uses silicon and graphene layers coated over the base of a glass prism sputtered with a silver layer. The graphene layer has the advantage of enhancing the biomolecules adsorption on the metal layer. The silicon layer between silver and graphene enhances the sensor performance. The number of graphene layers along with the thicknesses of silicon and silver layers is optimized to get the highest sensitivity of the detector. To investigate the effect of the light source wavelength, simulations are performed for four different wavelengths. The highest sensitivities exhibited by the SPR-based sensor are 393 and 160 deg/RIU for the platelets and plasma cells, respectively.

  相似文献   

10.
A temperature sensor based on hollow fiber (HF) filled with graphene-Ag composite nanowire and liquid is presented. The coupling properties and sensing performance are numerically analyzed by finite element method using wavelength and amplitude interrogations. Results show that the sensor exhibiting strong birefringence with x-polarized peak provides much higher sensitivities and better signal-to-noise ratio (SNR) than y-polarized, which is more suitable for temperature detection. The graphene-Ag composite nanowire can not only solve the oxidation problem but also avoid the metal coating. Moreover, it provides better performance than other similar works like Au-Ag nanowire-filled, Au nanowire-filled, and Ag nanowire-filled sensors. Contrary to the blue shift of traditional SPR temperature sensors, the resonance peak shifts to the longer wavelength in our device when temperature increases and the high sensitivity 9.44 nm/ °C is obtained. The influences of nanowire diameter, grapheme-layer thickness on the designed sensor, are also investigated. This work can provide a reference for developing a high sensitivity, real-time, remote sensing, and distributed temperature SPR sensor.  相似文献   

11.
Han  Lei  Ding  Huafeng  Huang  Tianye  Wu  Xu  Chen  Bingwei  Ren  Kaixuan  Fu  Songnian 《Plasmonics (Norwell, Mass.)》2018,13(4):1309-1314

A surface plasmon resonance (SPR)-based optical reflection modulator consisting of vertically stacked silica-silicon-HfO2-ITO-HfO2-Ag-prism multilayer is proposed and numerically investigated. The free carrier-concentration-dependent permittivity of indium-tin-oxide (ITO) at the HfO2/ITO interface induces an epsilon-near-zero (ENZ) effect contributing to strong field enhancement and modifies the SPR condition of incident light. With optimal geometry parameters and proper design of carrier concentration at the accumulation layer, modulation depth (MD) of ~100% and insertion loss (IL) of 3.7% can be simultaneously achieved. The IL can be further reduced by engineering silicon layer thickness. Moreover, the device offers a broadband operation wavelength from 1.5 to 1.6 μm with the variations of MD and IL smaller than 4 and 3%, respectively.

  相似文献   

12.
Gu  Sanfeng  Sun  Wei  Li  Meng  Zhang  Tianheng  Deng  Ming 《Plasmonics (Norwell, Mass.)》2022,17(3):1129-1137

A dual-core and dual D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with silver and aluminum nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties, are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36?~?1.42. In addition, a maximum wavelength sensitivity of 13,400 nm/RIU with the corresponding RI resolution of 7.46?×?10?6 RIU is obtained in the RI range of 1.41?~?1.42. The proposed sensor with the merits of high sensitivity, low cost, and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring, and biochemical analysis.

  相似文献   

13.

The performance of surface plasmon resonance (SPR) sensors has great dependence on its plasmonic material’s frequency response, which is described by the complex dielectric function. Through history, researchers developed and enhanced mathematical models to accurately describe the material dielectric function. Although many papers compared the accuracy of different dielectric function models and stated its limitations, none of it addressed the effect of dielectric function model on the SPR sensor’s characteristics. In this paper, we investigated the performance of the three most used dielectric function models (Drude, Lorentz-Drude, and Brendel-Bormann) and their effect on the theoretically obtained sensor parameters when used in a gold SPR sensor’s model and validated it with the experimentally measured dielectric function. The result showed that using less accurate dielectric function’s model has a drastic effect on the theoretically obtained sensor’s parameters. Among the three models, the widely used Drude model was not the most accurate; alternatively, Brendel-Bormann model was the most accurate.

  相似文献   

14.

Continuous monitoring of air quality and rapid detection of pollutants are highly desirable in urban planning and development of smart cities. One of the primary greenhouse gases responsible for environmental degradation and respiratory diseases is nitrogen dioxide (NO2). Existing gas sensors for measuring NO2 concentration suffer from drawbacks such as cross-sensitivity, limited range, and short life span. On the other hand, optical sensors, in particular, surface plasmon resonance (SPR) sensors, have emerged as a preferred alternative owing to advantages like high selectivity, immunity to electromagnetic interference, and low response time. In this work, we design and simulate a NO2 sensor based on a glass waveguide coated with a gold film. Surface plasmons are excited at the interface by a 400–500-nm light source, incident at an angle of 43.16°. To enhance the sensitivity, we further coat the waveguide with three layers of carbon-silver (C–Ag) nanodots, which increases the surface plasmon field amplitude by nearly 7 times, in the absence of NO2. When NO2 concentration is varied in the range of 0–200 ppm, a corresponding change is observed in the reflected amplitude. In the absence of the C–Ag nanodots layer, the sensitivity is only 0.00042%/ppm, and on addition of C–Ag nanodots, the sensitivity increases significantly to 0.14235%/ppm which is nearly 343 times higher. These results demonstrate the efficiency of implementing nanodots in SPR sensor to detect and trace concentrations of contaminants in the gas phase.

  相似文献   

15.

Surface plasmon resonance (SPR)–based structures are finding important applications in sensing biological as well as inorganic samples. In SPR techniques, an angle-resolved reflection (R) profile of the incident light from a metal-dielectric interface is measured and the resonance characteristics are extracted for the identification of the target sample. However, the performance, and hence the applicability of these structures, suffers when the weight and concentration of the target samples are small. Here, we show that SPR-based sensors can create strong magnetism at optical frequency, which can be used for the detection of target samples instead of using the conventional R profiles, as the magnetic resonance varies depending on the refractive index of the target sample. Using scattering parameters retrieval method, we computationally find out the effective permeability (μeff) of a SPR sensor with a structure based on Kretschmann configuration, and use it to calculate the performance of the sensor. A comparison with the conventional technique that uses R profile to detect a target sample shows a significant increase in the sensor performance when μeff is used instead.

  相似文献   

16.
Surface plasmons resonance (SPR) architectures based on grating coupler/disperser combination is an attractive alternative for spectral-based biochemical sensing. In this paper, we investigate theoretically and experimentally a new concept where the plasmon coupling occurs through a thin film grating and sensing occurs via the first evanescent diffraction order in transmitive mode. The surface plasmon wave excitation induces a peak in the wavelength as well as in the angular spectra of the detected first transmitted diffraction order. Accordingly, a change in SPR spectrum of the detected diffraction order can be used to quantify the amount of the target molecules immobilized on the sensor surface, and therefore, the concentration of these molecules in the analyte solution. The developed sensor architecture is dedicated to droplet biochemical sensing and appears to be especially suitable for biosensor integration and miniaturization. The presented sensor concept is perfectly suited for mass production of low-cost and reproducible SPR sensor chip for biochemical analysis. The implemented setup gives access to multichannel biosensing with the potential for efficient internal referencing essential to achieve sufficiently high reproducibility and accuracy of the measurements.  相似文献   

17.
In this paper, a surface plasmon resonance (SPR) based fiber optic ammonia gas sensor has been designed and fabricated using bromocresol purple (BCP) as sensing element. The sensor works under wavelength modulation scheme. The detection of ammonia gas has been carried out at room temperature. Three different kinds of film coating configurations, namely silver + BCP, gold + BCP, and silver + silicon + BCP on the unclad portion of the fiber have been used for studying the role of each layer. Further, to optimize the performance of the sensor, the films of varying thicknesses were coated using thermal evaporation technique. Experiments have been performed for the ammonia concentrations ranging from 0 to 150 ppm around the probe. To record the SPR spectrum, light from a polychromatic source is launched in the fiber and the spectrum is recorded at the other end of the fiber. The spectrum has a peak at lower wavelength while a dip at the higher wavelength. The dip corresponds to SPR while the peak appears to be due to fluorescence properties of the dye. It has been observed that as the ammonia gas comes in contact of the BCP layer, it changes the refractive index of the BCP dye which, in turn, changes the resonance wavelength. Further, the change in refractive index increases as the concentration of ammonia gas increases up to certain concentration of ammonia after that it saturates. Silicon layer has been shown as a protection layer for silver and gold from oxidation and acts as a tuner of wavelength. The proposed ammonia sensor has small response as well as recovery time.  相似文献   

18.
The refractive index resolution of a surface plasmon resonance (SPR) sensor has been significantly improved these years; however, higher sensing performance is always desired. In this work, we propose a line-monitoring, long-range SPR sensor whose resolution is much better than conventional SPR sensors. Also, in contrast to mono-channel detection, multichannel detection, using line-monitoring technique, can detect multiple channels concurrently. In this way, this system achieves a refractive index resolution of 4.0?×?10??7 refractive index units and can monitor multiple molecular interactions simultaneously. Finally, a model experiment detecting the Escherichia coli bacteria has demonstrated the potential for biomedical applications of this system.  相似文献   

19.
We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU?1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10?5 and 1.97 × 10?5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.  相似文献   

20.
We present a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, whose operating wavelength range is tunable. Gold nanoshells, consisting of silica cores coated with thin gold shells, are designed to be the functional material of the sensor because of their attractive optical properties. It is demonstrated that the resonant wavelength of the sensor can be precisely tuned in a broad range, 660 nm to 3.1 μm, across the visible and near-infrared regions of the spectrum by varying the diameter of the core and the thickness of the shell. Furthermore, the effects of structural parameters of the sensor on the sensing properties are systematically analyzed and discussed based on the numerical simulations. It is observed that a high spectral sensitivity of 4111.4 nm/RIU with the resolution of 2.45 × 10?5 RIU can be achieved in the sensing range of 1.33–1.38. These features make the sensor of great importance for a wide range of applications, especially in biosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号