首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the spirotryprostatin-A structure, we designed, synthesized, and evaluated different series of compounds belonging to the diketopiperazine structural class as potential cell cycle modulators and cytotoxic agents. Starting from the spirooxoindolthiazolidine scaffold, amide coupling with Pro derivatives and intramolecular cyclization reactions are suitable synthetic methods to generate chemically diverse diketopiperazine system, such as hexahydropyrrolo[1,2-a][1,3]thiazolo[3,2-d]pyrazine-5,10-dione (structure I), hexahydropyrrolo[1,2-a] [1,3]thiazolo[3,4-d]pyrazine-5,10-dione (structure II) and spiroindol-2-one[3,3′]hexahydro-5,10H-pyrrolo[1,2-a][1,3]thiazolo[3,4-d]pyrazine-5,10-dione (structure III). Some of these compounds, especially those who belong to the series I and II, showed interesting cytotoxic activity.  相似文献   

2.
The fragment of 2-substituted-3-sulfonylaminobenzamide has been proposed to replace the fragment of 2-substituted-3-sulfonylaminopyridine in PI3K and mTOR dual inhibitors to design novel anticancer agents based on bioisostere. The combination of the fragment of 2-substituted-3-sulfonylaminobenzamide with the fragment of 2-aminobenzothiazole or 2-aminothiazolo[5,4-b]pyridine, or 2-amino[1,2,4]triazolo[1,5-a]pyridine produced the novel structures of anticancer agents. As a result, nineteen target compounds were synthesized and characterized. Their antiproliferative activities in vitro were evaluated via MTT assay against four human cancer cell lines including HCT-116, A549, MCF-7 and U-87 MG. The SAR of target compounds was preliminarily discussed. Compound 1g with potent antiproliferative activity was examined for its effect on the AKT and p-AKT473. The anticancer effect of 1g was evaluated in established nude mice HCT-116 xenograft model. The results suggested that compound 1g can block PI3K/AKT/mTOR pathway and significantly inhibit tumor growth. These findings strongly support our assumption that the fragment of benzamide can replace the pyridine ring in some PI3K and mTOR dual inhibitor to design novel anticancer agents.  相似文献   

3.
For the purpose of discovering novel type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase, we designed and synthesized 5,6-fused heterocyclic compounds bearing a anilide group. A co-crystal structure analysis of imidazo[1,2-b]pyridazine derivative 2 with VEGFR2 revealed that the N1-nitrogen of imidazo[1,2-b]pyridazine core interacts with the backbone NH group of Cys919. To retain this essential interaction, we designed a series of imidazo[1,2-a]pyridine, [1,2,4]triazolo[1,5-a]pyridine, thiazolo[5,4-b]pyridine, and 1,3-benzothiazole derivatives maintaining a ring nitrogen as hydrogen bond acceptor (HBA) at the corresponding position. All compounds thus designed displayed strong inhibitory activity against VEGFR2 kinase, and the [1,2,4]triazolo[1,5-a]pyridine 13d displayed favorable physicochemical properties. Furthermore, 13d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited platelet-derived growth factor receptor (PDGFR) kinases. Oral administration of 13d showed potent anti-tumor efficacy in DU145 and A549 xenograft models in nude mice.  相似文献   

4.
We initiated our structure-activity relationship (SAR) studies for novel ACC1 inhibitors from 1a as a lead compound. Our initial SAR studies of 1H-Pyrrolo[3,2-b]pyridine-3-carboxamide scaffold revealed the participation of HBD and HBA for ACC1 inhibitory potency and identified 1-methyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1c as a potent ACC1 inhibitor. Although compound 1c had physicochemical and pharmacokinetic (PK) issues, we investigated the 1H-pyrrolo[3,2-b]pyridine core scaffold to address these issues. Accordingly, this led us to discover a novel 1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1k as a promising ACC1 inhibitor, which showed potent ACC1 inhibition as well as sufficient cellular potency. Since compound 1k displayed favorable bioavailability in mouse cassette dosing PK study, we conducted in vivo Pharmacodynamics (PD) studies of this compound. Oral administration of 1k significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at a dose of 100 mg/kg. Accordingly, our novel series of potent ACC1 inhibitors represent useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.  相似文献   

5.
Four series of novel thieno[3,2-d]pyrimidine and quinazoline derivatives containing N-acylhydrazone or semicarbazone were designed, synthesized, and evaluated for their biological activity. Of which compound 14 showed the most potent antitumor activities with IC50 values of 1.78 μM, 1.02 μM, 1.98 μM, 0.41 μM and 0.22 μM against HT-29, MDA-MB-231, U87MG, PC-3 and HCT-116 cell lines respectively. Inhibition of enzymatic assays showed that PI3Kα was very likely to be one of the drug targets of 14 with the IC50 value of 0.20 μM. According to the results of antitumor activity, the SARs were summarized, which indicated that thieno[3,2-d]pyrimidine and semicarbazone are optimal fragments. In addition, compounds with hydroxyl group at the 4-position on the terminal phenyl ring were more active. Annexin-V and propidium iodide (PI) double staining confirmed that the most active cytotoxic compound 14 can induce cell apoptosis in HCT-116 cells. Moreover, the influence of 14 on the cell cycle distribution was assessed on the HCT-116 cell line, exhibiting a cell cycle arrest at the G2/M phase. Furthermore, molecular docking analysis was also performed to determine possible binding modes between PI3Kα and the target compound. These results will guide us to further refine the structure of the thieno[3,2-d]pyrimidine and quinazoline derivatives to achieve optimal antitumor activity.  相似文献   

6.
In trying to develop new anticancer agents, a series of 1H-pyrazolo[3,4-b]pyridine derivatives was designed and synthesized. Fifteen compounds were evaluated in vitro for their anti-proliferative activity against HePG-2, MCF-7, HCT-116, and PC-3 cell lines. Additionally, DNA binding affinity of the synthesized derivatives was investigated as a potential mechanism for the anticancer activity using DNA/methyl green assay and association constants assay. Compounds 19, 20, 21, 24 and 25 exhibited good activity against the four cancer cells comparable to that of doxorubicin. Interestingly, DNA binding assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good DNA binding affinity comparable to that of doxorubicin and daunorubicin. Furthermore, a molecular docking of the tested compounds was carried out to investigate their binding pattern with the prospective target, DNA (PDB-code: 152d).  相似文献   

7.
Six dinuclear platinum(II) complexes with a chiral tetradentate ligand, (1R,1′R,2R,2′R)-N1,N1′-(1,4-phenylenebis(methylene))dicyclohexane-1,2-diamine, have been designed, synthesized and characterized. In vitro cytotoxicity evaluation of these metal complexes against human A549, HCT-116, MCF-7 and HepG-2 cell lines have been carried out. All compounds showed antitumor activity to HepG-2, HCT-116 and A549. Particularly, compounds A1 and A2 exhibited significant better activity than other four compounds and A2 even showed comparable cytotoxicity to cisplatin against HepG-2 cell line.  相似文献   

8.
A series of thieno[3,2-d]pyrimidines bearing a hydroxamic acid moiety as novel HDAC inhibitors were designed and synthesized. The structures of the new synthesized compounds were confirmed using IR, 1H, 13C NMR spectrum. Compounds 1113 showed potent inhibitory activities against HDACs with IC50 values at 0.38, 0.49 and 0.61 μM. Most of target compounds displayed strong anti-proliferative activity by a MTT assay on three human cancer cell lines including HCT-116, MCF-7 and HeLa. Compound 11, having potent inhibitory activities against HDACs, induced apoptosis and G2/M cell cycle arrest in HCT-116 cell line.  相似文献   

9.
The objectives of this study are to investigate the possible ways by which the curcumin analogs 2a and 2b exert their antiproliferative properties. The analogs 2a and 2b have submicromolar IC50 values towards human HCT-116 colon cancer cells but are far less toxic to human non-malignant CRL-1790 colon cells. Both compounds affected a number of mitochondrial functions in HCT-116 cells namely increasing the intracellular concentrations of reactive oxygen species, inhibiting oxygen consumption and decreasing the mitochondrial membrane potential. These molecules also produced swelling of isolated rat liver mitochondria, supporting a mitochondrial mechanism of cytotoxicity. Both compounds reacted with glutathione in the presence of glutathione S-transferase π and hence they may be classified as thiol alkylators.  相似文献   

10.
A novel series of barbiturate and thiobarbiturate analogs of 2-benzoyl-3-methyl-5-oxo-5H-furo[3,2-g]chromene-6-carbaldehydes (3a-g and 4a-d, respectively) and 6-methyl-4,8-dioxo-4,8-dihydropyrano[3,2-g]chromenes (7a-c), were synthesized and evaluated for their antitubercular activities against Mycobacterium tuberculosis H37RV, and cytotoxicity (CC50) in the VERO cell MABA assay. The results indicate that the furanochromene series of compounds (3a-g and 4a-d) showed only weak to moderate antitubercular activity. However, the pyranochromene analog 7b showed good antitubercular activity (IC90: 5.9 μg/mL) and cytotoxicity (CC50: 14.27 μg/mL). The antitubercular activity of 7b was superior to the antituberculosis drug, pyrazinamide (PZA; IC90: >20 μg/mL). Analog 7b was considered to be a lead compound for subsequent structural optimization.  相似文献   

11.
A family of thieno[3,2-b]pyridine based small molecule inhibitors of c-Met and VEGFR2 were designed based on lead structure 2. These compounds were shown to have IC50 values in the low nanomolar range in vitro and were efficacious in human tumor xenograft models in mice in vivo.  相似文献   

12.
Synthesis of a new series of diarylureas and amides having pyrrolo[3,2-b]pyridine scaffold is described. Their in vitro antiproliferative activity against human melanoma cell line A375 and HS 27 human fibroblast cell line was tested and the effect of substituents on the pyrrolo[3,2-b]pyridine was investigated. The newly synthesized compounds, except meta-substituted derivatives (Ijk and Ivw), generally showed superior or similar activity against A375 to Sorafenib. Among all of these derivatives, compounds Ir and It having 5-benzylamide substituted 4′-amide moieties showed the most potent antiproliferative activity against A375.  相似文献   

13.
Seventy nine derivatives of thieno[2,3-b]quinolines, tetrahydrothieno[2,3-b]quinoline, dihydrocyclopenta[b]thieno[3,2-e]pyridine, cyclohepta[b]thieno[3,2-e]pyridine and hexahydrocycloocta[b]thieno[3,2-e]pyridine were either synthesized or obtained commercially and tested for their antiproliferative activity against HCT116, MDA-MB-468 and MDA-MB-231 human cancer cell lines. The most potent eight compounds were active against all cell lines with IC50 values in the 80–250 nM range. In general hexahydrocycloocta[b]thieno[3,2-e]pyridines were most active with increasing activity observed as larger cycloalkyl rings were fused to the pyridine ring.  相似文献   

14.
A series of novel imidazo[4,5-d]azepine compounds derived from marine natural product ceratamine A were designed and synthesized in 7 steps. Most compounds exhibited comparable cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, A549 and A2780) to natural product ceratamine A. Compound 1k, bearing methoxy group at C-14, C-15 and C-16, showed the best in vitro cytotoxicity, which was better than ceratamine A. The structure and activity relationships study showed that the benzyloxymethyl group on N-3 played an important role on the cytotoxicity.  相似文献   

15.
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.  相似文献   

16.
Xanthine oxidase (XO) is responsible for the pathological condition called gout. Inhibition of XO activity by various pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidine-4-one derivatives was assessed and compared with the standard inhibitor allopurinol. Out of 10 synthesized compounds, two compounds, viz. 3-amino-6-(2-hydroxyphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3b) and 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3g) were found to have promising XO inhibitory activity of the same order as allopurinol. Both compounds and allopurinol inhibited competitively with comparable Ki (3b: 3.56?µg, 3g: 2.337?µg, allopurinol: 1.816?µg) and IC50 (3b: 4.228?µg, 3g: 3.1?µg, allopurinol: 2.9?µg) values. The enzyme–ligand interaction was studied by molecular docking using Autodock in BioMed Cache V. 6.1 software. The results revealed a significant dock score for 3b (?84.976?kcal/mol) and 3g (?90.921?kcal/mol) compared with allopurinol (?55.01?kcal/mol). The physiochemical properties and toxicity of the compounds were determined in silico using online computational tools. Overall, in vitro and in silico study revealed 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2–a]pyrimidin-4-one (3g) as a potential lead compound for the design and development of XO inhibitors.  相似文献   

17.
A simple and efficient synthesis of 6-fluoro-4-oxopyrido[2,3-a]carbazole-3-carboxylic acids (13ae) and a structurally related 6-fluoro-4-oxothieno[2′,3′:4,5]pyrrolo[3,2-h]quinoline (13f) was achieved via Stille arylation of 7-chloro-6-fluoro-8-nitro-4-oxoquinoline-3-carboxylate and a subsequent microwave-assisted phosphite-mediated Cadogan reaction. The new compounds were tested for their in vitro antimicrobial and antiproliferative activity. The ability of 13af to inhibit the activity of DNA gyrase and topoisomerase IV was also investigated. The thieno isostere (13f) emerged as the most active antibacterial, while the 9-fluoro derivative (13e) was the most potent against multidrug-resistant staphylococci. Compounds 13a, 13cf displayed growth inhibition against MCF-7 breast tumor and A549 non-small cell lung cancer cells coupled with an absence of cytotoxicity toward normal human-derm fibroblasts (HuDe). Compound 13e was the most active anticancer against MCF-7 cells, with greater potency than ellipticine (IC50 0.8 and 1.6 μM, respectively). The most active compounds in this series show promise as dual acting anticancer and antibacterial chemotherapeutics.  相似文献   

18.
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.  相似文献   

19.
A series of nitric oxide (NO) donating derivatives of hederacolchiside A1 bearing triterpenoid saponin motif were designed, synthesized and evaluated for their anticancer activity. All of the tested furoxan-based NO releasing compounds showed significant proliferation inhibitory activities. Especially compound 6a exhibited strong cytotoxicity (IC50 = 1.6–6.5 μM) against four human tumor cell lines (SMMC-7721, NCI-H460, U251, HCT-116) in vitro and the highest level of NO releasing. Furthermore, compound 6a was revealed low acute toxicity to mice and weak haemolytic activity with potent tumor growth inhibition against mice H22 hepatocellular cells in vivo (51.5%).  相似文献   

20.
The present report describes the synthesis and antiproliferative evaluation of certain indolo[3,2-c]quinoline derivatives. For the C6 anilino-substituted derivatives, (11H-indolo[3,2-c]quinolin-6-yl)phenylamine (6a) was inactive. Structural optimization of 6a by the introduction of a hydroxyl group at the anilino-moiety resulted in the enhancement of antiproliferative activity in which the activity decreased in an order of para-OH, 7a > meta-OH, 8a > ortho-OH, 9a. For the C6 alkylamino-substituted derivatives, 11a, 12a, 13a, 14a, and 15a exhibited comparable antiproliferative activities against all cancer cells tested and the skin Detroit 551 normal fibroblast cells. Three cancer cells, HeLa, A549, and SKHep, are very susceptible with IC50 of less than 2.17 μM while PC-3 is relatively resistant to this group of indolo[3,2-c]quinolines. For the 2-phenylethylamino derivatives, compound 20a is active against the growth of HeLa with an IC50 of 0.52 μM, but is less effective against the growth of Detroit 551 with an IC50 of 19.32 μM. For the bis-indolo[3,2-c]quinolines, N,N-bis-[3-(11H-indolo[3,2-c]quinolin-6-yl)aminopropyl]amine hydrochloride (25) is more active than its N-methyl derivative 26 and the positive Doxorubicin. Mechanism studies indicated 25 can induce caspase-3 activation, γ-H2AX phosphorylation, cleavage of poly(ADP-ribose)polymerase and DNA fragmentation. These results provide evidence that DNA, topo I, and topo II are the primary targets of indolo[3,2-c]quinoline derivatives and that consequently inhibits proliferation and causes apoptosis in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号