首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We theoretically investigate the coupling between Tamm plasmons and localized surface plasmons (LSPs) as well as propagating surface plasmons (PSPs) in a multilayer structure consisting of a metallic nanowire array and a spatially separated metal–dielectric Bragg reflector (DBR). A clear anticrossing behavior of the resonances is observed in the dispersion diagram resulting from the coupling, which is well explained by the coupled oscillator model. The coupling also creates new hybrid LSP or PSP modes with narrow bandwidths and unique spectral features. Upon the excitation of these hybrid modes, the local fields underneath the nanowires for the hybrid LSPs or near the lower metal layer surface for the hybrid PSPs are both enhanced greatly as compared with those achieved in the structure without DBR, which has potential applications in nonlinear optics and surface-enhanced spectroscopies.  相似文献   

2.
Stallberg  K.  Lilienkamp  G.  Daum  W. 《Plasmonics (Norwell, Mass.)》2019,14(6):1489-1496

The presence of a surrounding medium strongly affects the spectral properties of localized surface plasmons at metallic nanoparticles. Vice versa, plasmonic resonances have large impact on the electric polarization in a surrounding or supporting material. For applications, e.g., in light-converting devices, the coupling of localized surface plasmons with polarizations in semiconducting substrates is of particular importance. Using photoemission electron microscopy with tunable laser excitation, we perform single-particle spectroscopy of silver nanoclusters directly grown on Si(100). Two distinct localized surface plasmon modes are observed as resonances in the two-photon photoemission signals from individual silver clusters. The strengths of these resonances strongly depend on the polarization of the exciting electric field, which allows us to assign them to plasmon modes with polarizations parallel and perpendicular, respectively, to the supporting silicon substrate. Our mode assignment is supported by simulations which provide insight into the mutual interaction of charge oscillations at the particle surface with electric polarizations at the silver/silicon interface.

  相似文献   

3.

We propose a highly sensitive refractive index sensor based on the surface phonon resonance (SPhR) in the mid-IR spectral range. Surface phonon polaritons (SPhPs) are formed on polar dielectrics such as SiC in mid-IR wavelength range and can be excited with the help of a metallic grating at specific wavelength termed as resonance wavelength. The resonance wavelength of SPhP is significantly affected by the refractive index of the analyte medium placed over the grating. This forms the basis of a refractive index sensor. We have numerically evaluated the performance of such an SPhP-based refractive index sensor by using rigorous coupled wave analysis (RCWA) in terms of sensitivity, detection accuracy, and quality factor. The quality factor and detection accuracy of the sensor formed on SiC substrate are found to be 225.1 RIU–1 (inverse of refractive index unit) and 6.75, respectively. We have also extended the study for other polar dielectric substrates cBN and GaN and observed considerable enhancement in the performance of the sensor for GaN. The values of quality factor and detection accuracy could be increased to 361.2 RIU–1 and 10.84, respectively, by using GaN substrate. The proposed sensor finds applications in refractive index sensing of liquids and biomolecules having refractive index in the range 1.33–1.36.

  相似文献   

4.
Tang  Chao  Niu  Qingshan  He  Yuanhao  Zhu  Huaxin  Wang  Ben-Xin 《Plasmonics (Norwell, Mass.)》2020,15(2):467-473

Tunable triple-peaks with the transmission intensity of more than 90% plasmonically induced transparency metamaterial resonator based on nested double π-shaped metallic structure is proposed at the terahertz frequency region, which is consisted of three sets of gold nanorods with different sizes placed on a dielectric substrate of SiO2. The coupling effect of localized electric field between different parts of the proposed structure can be used to explain the physical mechanism of three transparent windows. The finite-difference time-domain (FDTD) is used to study the spectral properties of the proposed structure, and the influence of the size of the nanorods and the relative distance between them on the spectral characteristics are also discussed. It can be seen that some obvious shift phenomena occur in the spectra with the change of these nanorods. These results indicate that the proposed structure opens up new avenues in many related applications, especially for multi-channel filters, optical switches, and sensors.

  相似文献   

5.

We revisit the surface plasmon resonances established along a planar interface lying between a lossless dielectric and a lossy metal. By examining the orbital and spin parts of the Poynting vector, the mechanisms behind forward or backward flows are clearly illustrated. Consequently, we were able to construct more intuitive pictures of two-dimensional energy flows induced by the metallic losses. In addition, we recognized the importance of both asymmetry and symmetry hidden behind the familiar transverse-magnetic waves. Our numerical results are close to reality, since experimentally observed optical data of gold is employed for a lossy metal.

  相似文献   

6.
The optical extinction spectra of micro- and nanoparticles made up of high-contrast dielectrics exhibit a set of very intense peaks due to the excitations of morphology-dependent resonances (MDRs). These kind of resonances are well known at the microscopic scale as whispering gallery modes. In this work, we study numerically the optical spectra corresponding to a core–shell structure composed by an infinite silicon nanowire coated with a silver shell. This structure shows a combination of both excitations: MDRs and the well-known surface plasmon resonances in dielectric metallic core–shell nanoparticles (Ekeroth Abraham and Lester, Plasmon 2012). We compute in an exact form the complete electromagnetic response for both bare and coated silicon nanowires in the range of 24–200 nm of cross-sectional sizes. We take into account an experimental bulk dielectric function of crystalline silicon and silver by using a correction by size of the metal dielectric function. In this paper, we consider small silver shells in the range of 1–10 nm of thickness as coatings. We analyze the optical response in both the far and near fields, involving wavelengths in the extended range of 300–2,400 nm. We show that the MDRs excited at the core are selectively perturbated by the metallic shell through the bonding and antibonding surface plasmons (SPs). This perturbation depends on both the size of the core and the thickness of the shell, and, as a consequence, we get an efficient tuneable and detectable simple system. Our calculations apply perfectly to long nanotubes compared to the wavelength for the two fundamental polarizations (s, p).  相似文献   

7.

In this paper, a stacked structure composed of periodic arrays of one-dimensional thick slits embedded in a conventional dielectric medium is investigated in the subwavelength regime. Arrays of thick slits are known to support extraordinary transmission resonances. When periodically embedded in multilayered structures, they demonstrate band gap properties, which can produce flat passband regions in some structures, applicable to filter designs. In addition, by adjusting the parameters of the structures, they can be designed to create epsilon-near-zero and negative permittivity metamaterials. The analysis is carried out based on a simple and accurate analytical solution. The employed circuit model includes a transmission line corresponding to the slits, terminated by two surface admittances at the interfaces. The surface admittances assume the role of the diffractive modes and dominate the limitations of the usual analytical surface admittances obtained through heuristic approaches. A Π network of lumped elements equivalent to this circuit model is introduced in the present paper. This network helps to find the source of extraordinary resonances. Finally, the electromagnetic wave transmission through the stacked structure is studied and the effects of the thickness of the slits and dielectric slabs on the transmission spectra are analyzed. The results are compared to those obtained by full wave simulations, showing good agreement.

  相似文献   

8.

We present a multi-band terahertz absorber formed by periodic square metallic ribbon with T-shaped gap and a metallic ground plane separated by a dielectric layer. It is demonstrated that absorption spectra of the proposed structure consist of four absorption peaks located at 1.12, 2.49, 3.45, and 3.91 THz with high absorption coefficients of 98.0, 98.9, 98.7, and 99.6%, respectively. It is demonstrated that the proposed absorber has the tunability from single-band to broadband by changing the length of square metallic ribbon and we can also select or tune the frequencies which we want to use by changing polarization angles. Importantly, the quality factor Q at 3.91 THz is 30.1, which is 5.6 times higher than that of 1.12 THz. These results indicate that the proposed absorber has a promising potential for devices, such as detection, sensing, and imaging.

  相似文献   

9.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

10.
Zheng  Gaige  Zhang  Haojing  Bu  Lingbing  Gao  Haiyang  Xu  Linhua  Liu  Yuzhu 《Plasmonics (Norwell, Mass.)》2018,13(1):215-220

A planar silicon carbide/dielectric multilayer structure is investigated in Otto geometry, where surface phonon polaritons and planar waveguide mode can be coupled to realize Fano resonances under transverse magnetic polarization. The resonance coupling is analytically demonstrated using the coupled harmonic oscillator model and numerically presented through rigorous coupled-wave analysis calculations, which shows that the coupling strength between different resonances and the resonant wavelength matching condition plays an important role in the bandwidth and position of the Fano resonance (FR); the magnetic field distribution was also shown to explain the origin of FRs qualitatively.

  相似文献   

11.

In this report, a novel D-shaped long-range surface plasmon resonance (LRSPR) fiber base sensor has been introduced. The demonstration of proposed sensor involves two D-shaped silver-coated models to study the sensitivity responses. The entire study with the constructed models is based on a single-mode fiber. The models are multilayered consisting of metal, dielectric, and analyte as separate layers. Silver (Ag) and magnesium fluoride (MgF2) strips are used as metal and dielectric layers respectively. The constituency of analyte as an interface excellently standardized the models for sensitivity detection. In this report, a large range of analyte refractive indices (RI) which varies from 1.33 to 1.38 is appraised for the proposed models to characterize the sensitivity. The entire context is encompassed by the wavelength region from 450 to 850 nm with an interval of 20 nm. Sensitivities in this report are measured based on the analyte position from the core and metal for both models. For each of the two models, the analyte is placed as the top layer. RIs of the applied metal (Ag) are measured using the Drude-Lorentz formula. The simulated sensitivities for model-1 and model-2 vary from 6.3?×?103 nm/RIU to 8.7?×?103 nm/RIU.

  相似文献   

12.
Broadband light transparency of metallic structures has long been pursued due to the potential applications in the optoelectronic communications, flat panel displays, and clean solar energy. Considerable efforts have been made on the multiband electromagnetic wave transparency of plasmonic metamolecules. However, far less work has been focused on the multispectral light transparency of a seamless metal film. Here, we for the first time propose a seamless metal film structure coated by double conventional plasmonic crystals and demonstrate the observed multispectral broadband light transparency behavior. A maximum transmittance larger than 92 % is achieved. The average transmittance of the whole spectral range from 550 to 1,100 nm is exceeding 45.8 %, suggesting the achievement of an ultra-broadband semi-transparent window. Particularly, the transparency features are highly scalable by tuning the structural parameters. Plasmonic resonances and the metallic particle–film plasmonic interactions are responsible for the observed optical transparency properties. These findings and merits make the proposed structure a good candidate for numerous potential applications, including the optoelectronic components, transparent displayers, and light harvesting.  相似文献   

13.
We consider the formation of the surface plasmon polariton (SPP) mode in the structure with a metallic torus and a metallic flat surface separated by a dielectric medium. The energy of the wave field is mainly concentrated in the dielectric medium at the vicinity of the minimum thickness of the gap between the metallic surfaces. The dependence of the resonant frequency on parameters of the structure was determined. The strongly localized SPP mode in the transverse direction contributes to the increase in the Purcell factor that is crucial for enhancement of the spontaneous emission rate.  相似文献   

14.
All-dielectric resonant structure (ADRS) consisting of high-index nonlinear dielectrics has been theoretically and numerically demonstrated with multi-band ultra-sharp transmission response in this work. Bandwidth down to sub-nanometer and spectral Q-factor up to 920 are achieved in this ADRS-based metamaterial-like platform. Strong resonant electric field distributions by the high-index dielectric resonators and efficient coupling between the layered dielectric particles and the cavity mainly contribute to the multiple narrowband light transmission filtering. By using a Kerr nonlinear medium as the resonant dielectric, the positions of the transmission dips in the spectrum can be actively tuned by the incident light intensity. Due to the ultra-narrow spectral feature and the strong electric field distribution by the resonators, an efficient all-optical switching behavior with high spectral difference intensity and contrast ratio is obtained. Further study presents the observed multi-band transmission with high scalability by tuning the structural parameters. These optical features hold the predicted ADRS be potentially applied to constructing dielectric metamaterial-based all-optical switching or active subtractive transmission filtering with low power threshold at sub-diffraction scale.  相似文献   

15.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

16.
17.
Surface plasma oscillations in metallic particles as well as in thin metallic films have been studied extensively in the past decades. New features regarding surface plasma excitations are, however, constantly discovered, leading, for example, to surface-enhanced Raman scattering studies and enhanced optical transmission though metal films with nanohole arrays. In the present work, the role of a metallic substrate is examined in two cases, one involving an overcoat of dielectric nanoparticles and the other an overcoat of metallic nanoparticles. Theoretical results are obtained by modeling the nanoparticles as forming a two-dimensional, hexagonal lattice of spheres. The scattered electromagnetic field is then calculated using a variant of the Green function method. Comparison with experimental results is made for nanoparticles of tungsten oxide and tin oxide deposited on either gold or silver substrates, giving qualitative agreement on the extra absorption observed when the dielectric nanoparticles are added to the metallic surfaces. Such absorption would be attributed to the mirror image effects between the particles and the substrate. On the other hand, calculations of the optical properties of silver or gold nanoparticle arrays on a gold or a silver substrate demonstrate very interesting features in the spectral region from 400 to 1,000 nm. Interactions between the nanoparticle arrays surface plasmons and their images in the metallic substrate would be responsible for the red shift observed in the absorption resonance. Moreover, effects of particle size and ambient index of refraction are studied, showing a great potential for applications in biosensing with structures consisting of metallic nanoparticle arrays on metallic substrates.  相似文献   

18.
Surface plasmon resonances on bilayer aluminum nanowire gratings are studied in both theory and experiment. It is found that there are two kinds of surface plasmon on the bilayer metallic gating: longitudinal aluminum/dielectric/aluminum slit and lateral aluminum/dielectric interface waveguide mode. The surface plasmon waveguide mode resonance in the slits makes the grating act as a transverse magnetic (TM)-passing polarizer. With the lateral waveguide mode resonance, certain wavelengths of the incident TM light are translated to aluminum/air or aluminum/substrate waveguide light, and the grating acts as a color filter. With both resonances, the bilayer nanowire grating can be a compact-integrated polarizer and color filter.  相似文献   

19.

A self-referencing plasmonic platform is proposed and analyzed. By introducing a thin gold layer below a periodic two-dimensional nano-grating, the structure supports multiple modes including localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), and Fabry-Perot resonances. These modes get coupled to each other creating multiple Fano resonances. A coupled mode between the LSPR and SPR responses is spatially separated from the sensor surface and is not sensitive to refractive index changes in the surrounding materials or surface attachments. This mode can be used for self-referencing the measurements. In contrast, the LSPR dominant mode shifts in wavelength when the refractive index of the surrounding medium is changed. The proposed structure is easy to fabricate using conventional lithography and electron beam deposition methods. A bulk sensitivity of 429 nm/RIU is achieved. The sensor also has the ability to detect nanometer thick surface attachments on the top of the grating.

  相似文献   

20.
Tan  Jun  Wu  Zhe  Xu  Kai  Meng  Yanlong  Jin  Guojun  Wang  Lingli  Wang  Yuying 《Plasmonics (Norwell, Mass.)》2020,15(1):293-299

In this research, a perfect absorber based on an Au-ZnO-Al structure was studied numerically. The wavelength-selective and angle-independent characteristics of the device were demonstrated by simulation. The roles of the top metallic layer and the middle dielectric layer in producing a wavelength-selective perfect absorber with a high quality factor were investigated. The direction for further improving the quality factor is also pointed out in this paper. The research will be helpful for understanding the origination of perfect absorption in these types of metal-insulator-metal structures and producing a color filter with a high quality factor.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号