首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou  Chen  Huo  Yiping  Guo  Yiyuan  Niu  Qiqiang 《Plasmonics (Norwell, Mass.)》2021,16(5):1735-1743
Plasmonics - A metal-insulator-metal (MIM) waveguide consisting of two stub resonators and a ring resonator is proposed, which can be used as refractive index sensor and stop-band filter at the...  相似文献   

2.
Luo  Xin  Zou  Xihua  Li  Xiaofeng  Pan  Wei  Luo  Bin  Yan  Lianshan 《Plasmonics (Norwell, Mass.)》2014,9(4):887-892
Plasmonics - A plasmonic filter based on metal-insulator-metal (MIM) waveguide with phase shifts is proposed, and the corresponding transmission characteristics are investigated. Since the...  相似文献   

3.
Using the finite difference time-domain method, we present a comprehensive numerical investigation of a branch-shaped filter based on the metal-insulator-metal (MIM) waveguide. The results show that several passbands and stopbands appear in the transmission spectra, which are resulted by the phase differences between the surface plasmon polaritons (SPPs) propagating along the straight waveguide and the SPPs resonating in the circuit formed by the branch and the straight waveguide. The effects of the structural parameters of the branch-shaped filters on their transmission properties are also studied. These results not only present an alternative plasmonic filter for the MIM waveguides but also help us to understand the transmission properties of the circuit-shaped structures.  相似文献   

4.
A high performance plasmonic sensor based on a metal-insulator-metal (MIM) waveguide coupled with a double-cavity structure consisting of a side-coupled rectangular cavity and a disk cavity is proposed. The transmission characteristics of the rectangular cavity and disk cavity are analyzed theoretically and the improvements of performance for the double-cavity structure compared with a single cavity are studied. The influence of structural parameters on the transmission spectra and sensing performance are investigated in detail. A sensitivity of 1136 nm/RIU with a high figure of merit of 51,275 can be achieved at the resonant wavelength of 1148.5 nm. Due to the high performance and easy fabrication, the proposed structure may be applied in integrated optical circuits and on-chip nanosensors.  相似文献   

5.
Lei  Jianguo  Ji  Boyu  Lin  Jingquan 《Plasmonics (Norwell, Mass.)》2017,12(1):151-156
Plasmonics - A new high-performance plasmonic absorber based on the metal-insulator-metal grating nanostructure is proposed and numerically studied. The effect of geometric parameters of grating...  相似文献   

6.
The services provided by satellite communications are continuously increasing, and this demands a higher bandwidth and power consumption. The current devices involved with this problem are waveguides and filters. Recent research shows the technological limit of these macro-devices, so that it is necessary to work in new designs using higher frequency than microwaves, because the power consumption would be reduced and the data rate would increase from 195 Gbps to 5,600 Tbps. The use of optical communications in satellites would help to satisfy the demand of new services. In this article, the use of plasmonic waveguide filters is proposed to demultiplex signals in real time instead of the use of digital grating processors (DGP). These filters operate with surface plasmon polaritons in a metal-insulator-metal structure. Their power breakdown threshold is obtained and analyzed in a variable pressure range and operating at different wavelengths.  相似文献   

7.
Luo  Xin  Zhai  Xiang  Wang  Lingling  Lin  Qi  Liu  Jianping 《Plasmonics (Norwell, Mass.)》2017,12(2):509-514
Plasmonics - A novel narrow-band plasmonic filter in terahertz (THz) region based on optical Tamm plasmon (OTP) in dual-section InSb slot waveguide is proposed, and the corresponding transmission...  相似文献   

8.
Zheng  Pengfei  Yang  Huimin  Fan  Meiyong  Hu  Guohua  Zhang  Ruohu  Yun  Binfeng  Cui  Yiping 《Plasmonics (Norwell, Mass.)》2018,13(6):2029-2035

A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide was proposed to overcome the difficulty in achieving high-speed modulation on the nanometric plasmonic waveguide platform. The extinction ratio and the figure of merit of the proposed modulator were analyzed in detail, and a tradeoff between them was found due to the intrinsic loss of the channel plasmonic polariton waveguide. And an optimized hybrid plasmonic modulator with large modulation bandwidth of 0.662 THz, low power consumption of 118.7 fJ/bit, and short device length of 7.680 μm was obtained theoretically. In addition, the proposed hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide is easy to fabricate and provides a potential solution for the high-speed plasmonic modulator.

  相似文献   

9.
This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.  相似文献   

10.
The metal-insulator-metal (MIM) waveguides are considered best among all plasmonic waveguides for propagation of optical signal to deep sub-wavelength scale. In this paper, MIM plasmonic waveguides based Mach-Zehnder interferometer (MZI) is developed. It possesses nonlinear Kerr material in one of its linear arm for controlling of optical signal with light intensity. Self phase modulation (SPM) and cross phase modulation (XPM) processes inside nonlinear MZI are used to design novel and compact full-adder and full-subtractor. Analysis and verification of proposed devices are carried out using FDTD and MATLAB simulations.  相似文献   

11.
A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide has been proposed and numerically investigated. The finite-difference time-domain simulation results reveal that the switch based on T-shaped waveguide with two U-shaped grooves can realize the function of switching single wavelength from one port to the other by an external voltage. The U-shaped structure is composed of two teeth filled with highly nonlinear organic EO material and one groove filled with 6H-SiC connecting the two teeth. The switch wavelength can be chosen by adjusting both lengths of the left and right teeth, and the switch voltage is 3.35 V for the wavelength of λ = 730 nm with the insertion loss around −2.6 dB and the extinction ratio around −20 dB at port 2.  相似文献   

12.
13.
14.
In this paper, a novel plasmonic filter with very high extinction ratio and low insertion loss is proposed based on the coherent coupled nano-cavity array in a metal–insulator–metal (MIM) waveguide. The coherent coupling interactions among nano-cavities are investigated with an analytical model which is derived based on the temporal coupled-mode theory and transfer-matrix method. The destructive interference of the surface plasmon polaritons coupled from the nano-cavities at the resonant wavelength is achieved by suitably designing the period of the cavity array, which may be used for increasing the extinction ratio of the filter based on the nano-cavity array in the MIM waveguide. A plasmonic filter with an extinction ratio higher than 60 dB and an insertion loss less than 1.0 dB is obtained by applying the destructive interference in the design of a six-rectangular-cavity array in an Ag–air–Ag waveguide. And the correctness of the design for the filter is verified by the results obtained with the finite-difference time-domain simulation technique. This work may provide useful schemes and approaches for realization of various wavelength-sensitive devices in plasmonic integrated circuits.  相似文献   

15.
The nanofocusing of light source was proposed and simulated using the dielectric-loaded surface plasmon polariton (SPP) model with various laterally tapered planar dielectric architectures on the top surface of the metal. By using finite-difference time-domain method, enhancement factor for the local electric field under distinctive incident polarization was analyzed with different taper apexes under various incident wavelengths and incident angles of the excitation laser. The SPP dispersion and the effect of dissipation on adiabatic nanofocusing of SPP in a sharp taper structure were used to predict the optimal taper angles of the structure and to explain the phenomena of SPP wave slowing down as it propagating toward the taper end. This SPP nanofocusing process was also experimentally realized by illuminating the structure of a tapered CdS nanoribbon deposited on the Ag surface. As the emission of the focused SPP at the taper end, the proposed plasmonic structure can be severed as a light nanosource emitter in the future optical integrated circuits.  相似文献   

16.

In this paper, a wavelength demultiplexing structure based on multi-teeth-shaped metal-insulator-metal (MIM) plasmonic waveguide is designed and numerically studied using the finite-difference time-domain (FDTD) method. Investigating the characteristics of a multi-teeth-shaped plasmonic waveguide structure reveals that with the design of the structure, it was possible to create a mode inside the bandgap of the filter. Based on the created mode inside the bandgap of the filter, the demultiplexer structure has been proposed and investigated. By changing the geometric parameters of the structure, the transmission wavelength of the demultiplexer channel can be adjusted. The proposed demultiplexer can be used in integrated optical circuits.

  相似文献   

17.
We propose a highly sensitive temperature sensor based on photonic crystal surface plasmon waveguides comprising different plasmonic active metals such as gold, silver, and aluminum, utilizing surface plasmon resonance phenomenon. We found that the resonance wavelength can be easily and substantially tuned over a broad spectral range by changing the temperature and also by judiciously choosing the different plasmonic metals. Employing coupled mode theory, we found that the proposed sensor can be used in harsh environment with sensitivity as high as ~70 pm/K around telecommunication window.  相似文献   

18.
Wen  Kunhua  Hu  Yihua  Chen  Li  Zhou  Jinyun  He  Miao  Lei  Liang  Meng  Ziming 《Plasmonics (Norwell, Mass.)》2017,12(2):427-431
Plasmonics - A tunable multimode plasmonic filter is proposed by using a side-coupled ring-groove joint resonator. In addition to the integer resonance modes of the perfect ring resonator (RR),...  相似文献   

19.

Various photonic integrated components have been implemented by ultra-thin silicon-on-insulator (SOI) waveguides; therefore, it is desirable to couple ultra-thin SOI waveguides to plasmonic waveguides. In this paper, we present an ultra-thin SOI waveguide to a metal-dielectric-metal plasmonic waveguide based on a lens-funnel structure consisting of truncated Luneburg lens and metallic parabolic funnel. The lens is implemented by varying the guiding layer thickness. The effect of different parameters of the coupler’s geometry is studied using the finite-difference time-domain method. The 1.13-μm-long coupler improves the average coupling efficiency in the C-band from 66.4 to 82.1%. The numerical simulations indicate that the coupling efficiency is higher than 69% in the entire O, E, S, C, L, and U bands of optical communication.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号