共查询到20条相似文献,搜索用时 0 毫秒
1.
Gap junctions mediate intercellular communication and are critical for development and nervous system function. Initially thought to function solely as stand-alone molecules, it has now been shown that a stomatin-like protein regulates a gap junction channel in Caenorhabditis elegans. 相似文献
2.
Neuromodulators orchestrate complex behavioral routines by their multiple and combined effects on the nervous system. In the desert locust, Schistocerca gregaria, frontal ganglion neurons innervate foregut dilator muscles and play a key role in the control of foregut motor patterns. To further investigate the role of the frontal ganglion in locust behavior, we currently focus on the frontal ganglion central pattern generator as a target for neuromodulation. Application of octopamine, a well-studied insect neuromodulator, generated reversible disruption of frontal ganglion rhythmic activity. The threshold for the modulatory effects of octopamine was 10–6 mol l–1, and 10–4 mol l–1 always abolished the ongoing rhythm. In contrast to this straightforward modulation, allatostatin, previously reported to be a myoinhibitor of insect gut muscles, showed complex, tri-modal, dose-dependent effects on frontal ganglion rhythmic pattern. Using a novel cross-correlation analysis technique, we show that different allatostatin concentrations have very different effects not only on cycle period but also on temporal characteristics of the rhythmic bursts of action potentials. Allatostatin also altered the frontal ganglion rhythm in vivo. The analysis technique we introduce may be instrumental in the study of not fully characterized neural circuits and their modulation. The physiological significance of our results and the role of the modulators in locust behavior are discussed.Abbreviation CPG central pattern generator - FG frontal ganglion - JH juvenile hormone - STNS stomatogastric nervous system 相似文献
3.
Although locust feeding has been well studied, our understanding of the neural basis of feeding-related motor patterns is still far from complete. This paper focuses on interactions between the pattern of rhythmic movements of the mouth appendages, governed by the suboesophageal ganglion (SOG), and the foregut movements, controlled by the frontal ganglion (FG), in the desert locust. In vitro simultaneous extracellular nerve recordings were made from totally isolated ganglia as well as from fully interconnected SOG-FG and brain-SOG-FG preparations. SOG-confined bath application of the nitric oxide donor, SNP, or the phosphodiesterase antagonist, IBMX, each followed by the muscarinic agonist pilocarpine, consistently induced robust fictive motor patterns in the SOG. This was observed in both isolated and interconnected preparations. In the brain-SOG-FG configuration the SOG-confined modulator application had an indirect excitatory effect on spontaneous FG rhythmic activity. Correlation between fictive motor patterns of the two ganglia was demonstrated by simultaneous changes in burst frequency. These interactions were found to be brain-mediated. Our results indicate the presence of intricate neuromodulation-mediated circuit interactions, even in the absence of sensory inputs. These interactions may be instrumental in generating the complex rhythmic motor patterns of the mandibles and gut muscles during locust feeding or ecdysis-related air swallowing. 相似文献
4.
Drosophila has several genes for gap junction proteins. 总被引:1,自引:0,他引:1
5.
The locust frontal ganglion (FG) constitutes a major source of innervation to the foregut dilator muscles and thus plays a key role in control of foregut movements. This paper reviews our recent studies on the generation and characteristics of FG motor outputs in two distinct and fundamental locust behaviors: feeding and molting. In an in vitro preparation, isolated from all descending and sensory inputs, the FG was spontaneously active and generated rhythmic multi-unit bursts of action potentials, which could be recorded from all efferent nerves. Thus the FG motor pattern is generated by a central pattern generator within the ganglion. Intracellular recordings suggest that only a small fraction (10-20%) of the FG 100 neurons demonstrate rhythmic activity. The FG motor output in vivo was relatively complex, and strongly dependent on the locust's physiological and behavioral state. Rhythmic activity of the foregut was found to depend on the amount of food present in the crop; animals with full crop demonstrated higher FG burst frequency than those with empty crop. At the molt, the FG generates a distinct motor pattern that could be related to air-swallowing behavior. 相似文献
6.
Connexin family of gap junction proteins 总被引:44,自引:0,他引:44
Eric C. Beyer David L. Paul Daniel A. Goodenough 《The Journal of membrane biology》1990,116(3):187-194
7.
8.
Daniel J. Belliveau Gerald M. Kidder Christian C. G. Naus 《Genesis (New York, N.Y. : 2000)》1991,12(4):308-317
The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development. 相似文献
9.
10.
Burr GS Mitchell CK Keflemariam YJ Heidelberger R O'Brien J 《Biochemical and biophysical research communications》2005,335(4):1191-1198
We examined the interactions of calmodulin with neuronal gap junction proteins connexin35 (Cx35) from perch, its mouse homologue Cx36, and the related perch Cx34.7 using surface plasmon resonance. Calmodulin bound to the C-terminal domains of all three connexins with rapid kinetics in a concentration- and Ca2+-dependent manner. Dissociation was also very rapid. K(d)'s for calmodulin binding at a high-affinity site ranged from 11 to 72 nM, and K(1/2)'s for Ca2+ were between 3 and 5 microM. No binding to the intracellular loops was observed. Binding competition experiments with synthetic peptides mapped the calmodulin binding site to a 10-30 amino acid segment at the beginning of the C-terminal domain of Cx36. The micromolar K(1/2)'s and rapid on and off rates suggest that this interaction may change dynamically in neurons, and may occur transiently when Ca2+ is elevated to a level that would occur in the near vicinity of an activated synapse. 相似文献
11.
Summary Membranes rich in junction complexes were prepared from bovine lens, and the fragments of the membranes were reconstituted into proteoliposomes with a large excess of phosphatidylcholine and dicetylphosphate. The osmotic swelling behavior of these liposomes showed that the lens junction membranes contributed protein components that produced channels with a nominal diameter of 1.4 nm. Most preparations of lens junctions produced rates of osmotic swelling much slower than those found in proteoliposomes containing equivalent amounts ofEscherichia coli porin, and we discuss several possible explanations for this observation. 相似文献
12.
David Rand 《Journal of insect physiology》2010,56(8):884-892
The insect stomatogastric ganglia control foregut movements. Most previous work on the system has concentrated on the frontal ganglion (FG), including research into the role of the FG in feeding as well as molting-related behavior, mostly in locusts, but also in other insect species. The stomatogastric system exerts its physiological actions by way of careful interaction and coordination between its different neural centers and pattern-generating circuits. One such hitherto unstudied neural center is the hypocerebral ganglion (HG), which is connected to the FG via the recurrent nerve. It sends two pairs of nerves along the esophagus and to the posterior region of the crop, terminating in the paired ingluvial ganglia. Very little is known about the neuroanatomy and neurophysiology of the insect HG. Here we investigate, for the first time, the neuronal composition of the locust HG, as well as its motor output. We identify rhythmic patterns endogenous to the isolated HG, demonstrating the presence of a central pattern-generating network. Our findings suggest interactions between the HG and FG rhythm-generating circuits leading to complex physiological actions of both ganglia. This work will serve as a basis for future investigation into the physiology of the HG and its role in insect behavior. 相似文献
13.
The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development. 相似文献
14.
S. J. SIMPSON 《Physiological Entomology》1992,17(4):351-369
Abstract. A preparation is described for intracellular recording from the neur-opile of the sub-oesophageal ganglion (SOG) of the locust, while stimulating the labial and maxillary palps with plant material in such a way as to mimic the palpation behaviour which precedes and continues throughout feeding. Twelve neurones responding to simulated palpation were recorded from and stained in the SOG. Axons of three neurones ascended to the brain, six had descending axons and three had all of their processes confined to the suboesophageal ganglion. The major regions of arborization were in the ventrolateral and mediolateral neuropiles of the maxillary and labial neuromeres. All twelve neurones were solely mechanoresponsive. In addition to responding to palpation of one or more of the four palps, five also responded to stimulation of the labrum, one to touching each antenna, and one to mechanical stimulation of each of the six tarsi. In the context of what is known about the role of mechano-stimulation in the control of feeding, and given their particular patterns of input and arborizations, it is suggested that the neurones may be active during food selection and ingestion. 相似文献
15.
Cells within the vascular wall are coupled by gap junctions, allowing for direct intercellular transfer of low molecular weight molecules. Although gap junctions are believed to be important for vascular development and function, their precise roles are not well understood. Mice lacking either connexin37 (Cx37) or connexin40 (Cx40), the predominant gap junction proteins present in vascular endothelium, are viable and exhibit phenotypes that are largely non-blood vessel related. Since Cx37 and Cx40 are coexpressed in endothelial cells and could overlap functionally, some roles of junctional communication may only be revealed by the elimination of both connexins. In this study, we interbreed Cx37 and Cx40 knockout mice to generate Cx37-/- Cx40-/- animals and show that they display severe vascular abnormalities and die perinatally. Cx37-/- Cx40-/- animals exhibit localized hemorrhages in skin, testis, gastrointestinal tissues, and lungs, with pronounced blood vessel dilatation and congestion occurring in some areas. Vascular anomalies were particularly striking in testis and intestine. In testis, abnormal vascular channels were present, with these channels coalescing into a cavernous, endothelium-lined blood pool resembling a hemangioma. These results provide evidence of a critical role for endothelial gap junction-mediated communication in the development and/or functional maintenance of segments of the mouse vasculature. 相似文献
16.
Heteromerization of innexin gap junction proteins regulates epithelial tissue organization in Drosophila
下载免费PDF全文

Lehmann C Lechner H Löer B Knieps M Herrmann S Famulok M Bauer R Hoch M 《Molecular biology of the cell》2006,17(4):1676-1685
Gap junctions consist of clusters of intercellular channels, which enable direct cell-to-cell communication and adhesion in animals. Whereas deuterostomes, including all vertebrates, use members of the connexin and pannexin multiprotein families to assemble gap junction channels, protostomes such as Drosophila and Caenorhabditis elegans use members of the innexin protein family. The molecular composition of innexin-containing gap junctions and the functional significance of innexin oligomerization for development are largely unknown. Here, we report that heteromerization of Drosophila innexins 2 and 3 is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins colocalize in epithelial cell membranes. Innexin3 is mislocalized to the cytoplasm in innexin2 mutants and is recruited into ectopic expression domains defined by innexin2 misexpression. Conversely, RNA interference (RNAi) knockdown of innexin3 causes mislocalization of innexin2 and of DE-cadherin, causing cell polarity defects in the epidermis. Biochemical interaction studies, surface plasmon resonance analysis, transgenesis, and biochemical fractionation experiments demonstrate that both innexins interact via their C-terminal cytoplasmic domains during the assembly of heteromeric channels. Our data provide the first molecular and functional demonstration that innexin heteromerization occurs in vivo and reveal insight into a molecular mechanism by which innexins may oligomerize into heteromeric gap junction channels. 相似文献
17.
Thyroid cell proliferation in response to forced expression of gap junction proteins 总被引:4,自引:0,他引:4
Flachon V Tonoli H Selmi-Ruby S Durand C Rabilloud R Rousset B Munari-Silem Y 《European journal of cell biology》2002,81(5):243-252
Gap junctions are known to play a role in the control of cell proliferation, and connexins (Cx) are considered to be tumor suppressors. However, the effects of Cx on cell proliferation are dependent on the Cx which is expressed and on the cell type under consideration. We previously found that restoration of cell-to-cell communication by stable transfection of two independent thyroid-derived cell lines, FRTL-5 and FRT cells, with the Cx32 gene induced a marked reduction of their proliferation rate. This study aimed i) at determining whether Cx43, which is coexpressed with Cx32 by thyroid epithelial cells, exerts the same action as Cx32 on cell proliferation and ii) at identifying alterations of the cell cycle control system that might account for the Cx32-induced proliferation slowdown in thyrocytes. In contrast with previous data on different epithelial cell types, we report that restoration of intercellular communication in FRTL-5 and FRT cells by stable expression of Cx43 did not modify their proliferation properties. Cell cycle analyses revealed that the Cx32-induced proliferation slow-down was related to a lengthening of the G1 phase. The level of expression of two regulatory proteins of the Cip/Kip cyclin-dependent kinase inhibitor family, p27kip1 and p2cip1, was increased in the two cell lines expressing Cx32. In conclusion, Cx32 and Cx43, physiologically coexpressed by thyrocytes, have a differential impact on thyroid cell proliferation in vitro. The cyclin-dependent kinase inhibitors, p27kip1 and p21cip1 might represent cell cycle effectors relaying the down-regulatory effect of Cx32 on the proliferation of thyroid epithelial cells. 相似文献
18.
Molecular cloning and developmental expression of two chick embryo gap junction proteins 总被引:11,自引:0,他引:11
E C Beyer 《The Journal of biological chemistry》1990,265(24):14439-14443
The connexins are a family of related gap junction proteins which contain conserved transmembrane and extracellular domains but unique cytoplasmic regions. To identify connexins with potential roles in development, a chick embryo cDNA library was screened by hybridization at low stringency with a cDNA for rat connexin-43. cDNA clones for two previously undescribed connexins were isolated. Chick connexin-45 has a predicted molecular mass of 45,376 daltons; connexin-42 has a predicted molecular mass of 41,748 daltons. Both of these predicted connexin proteins share the homologous regions noted in other members of this family, and each has its own unique regions. Southern blots of chicken genomic DNA suggest that each connexin is encoded by a distinct single copy gene. RNA blots demonstrate that while chick connexin-43, -42, and -45 are each expressed in a number of chick organs, they each have a unique tissue distribution. Each connexin mRNA is present in heart. Blots of total RNA isolated from hearts of chick embryos of different ages demonstrate that the abundance of connexin-42 and -43 mRNAs varies no more than 2-fold between the embryo and the adult. However, connexin-45 mRNA shows a dramatic change, falling 10-fold from the 6-day embryonic heart to the adult. These multiple connexins are likely to have different physiological properties and may account for the multiple physiologically distinct gap junction channels which have been observed in cardiac myocytes. They may provide a mechanism for the formation of communication compartments in the developing myocardium. 相似文献
19.
Cell to cell communication plays an essential role during pattern formation and morphogenesis of the diverse tissues and organs of the body. In invertebrates, such as the fruitfly Drosophila, the direct communication of closely apposed cells is mediated by gap junctions which are composed of oligomers of the innexin family of transmembrane channel proteins. Few data exist about the developmental role of the eight innexin genes which have been found in the Drosophila genome. We have investigated the role of the innexin 2 and ogre genes during gastrointestinal development of the fly embryo. Our findings suggest that innexins are involved in the formation of the proventriculus, an organ that develops at the foregut/midgut boundary by migration of primordial cells and subsequent infolding of epithelial tissue layers. 相似文献
20.
The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins 总被引:8,自引:0,他引:8
Baranova A Ivanov D Petrash N Pestova A Skoblov M Kelmanson I Shagin D Nazarenko S Geraymovych E Litvin O Tiunova A Born TL Usman N Staroverov D Lukyanov S Panchin Y 《Genomics》2004,83(4):706-716
We have cloned the genes PANX1, PANX2 and PANX3, encoding putative gap junction proteins homologous to invertebrate innexins, which constitute a new family of mammalian proteins called pannexins. Phylogenetic analysis revealed that pannexins are highly conserved in worms, mollusks, insects and mammals, pointing to their important function. Both innexins and pannexins are predicted to have four transmembrane regions, two extracellular loops, one intracellular loop and intracellular N and C termini. Both the human and mouse genomes contain three pannexin-encoding genes. Mammalian pannexins PANX1 and PANX3 are closely related, with PANX2 more distant. The human and mouse pannexin-1 mRNAs are ubiquitously, although disproportionately, expressed in normal tissues. Human PANX2 is a brain-specific gene; its mouse orthologue, Panx2, is also expressed in certain cell types in developing brain. In silico evaluation of Panx3 expression predicts gene expression in osteoblasts and synovial fibroblasts. The apparent conservation of pannexins between species merits further investigation. 相似文献