首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The critical role of nuclear topoisomerase enzymes during cell proliferation process guided topoisomerases to be one of the major targets for anticancer drug development. We have designed and synthesized 22 heteroaromatic ring incorporated chalcone derivatives substituted with epoxide or thioepoxide. Topoisomerase enzyme inhibitory activity and cytotoxic tests were also conducted to evaluate compounds’ pharmacological efficacy. In the topoisomerase I inhibitory test, compound 1 was most active one, 24% of inhibition at 20 μM, among all the compounds but it was lower than camptothecin. Compounds 9, 11, and 13 inhibited the function of topoisomerase II more strongly than etoposide with almost same magnitude (around 90% and 30% inhibition at 100 and 20 μM, respectively) which were higher than those of etoposide (72% and 18% inhibition). In the cytotoxicity test, compound 9 inhibited T47D cancer cell growth with the IC50 value of 6.61 ± 0.21 μM. On the other hand, compound 13 (IC50: 4.32 ± 0.18 μM) effectively suppressed MDA-MB468 cancer cell growth.  相似文献   

2.
A novel series of amide derivatives of lomefloxacin were synthesized and evaluated for their topoisomerase I and II inhibitory activity as well as cytotoxicity against a panel of five human cancer cell lines. Of the compounds prepared compounds 9d and 9g exhibited strong inhibition against topoisomerase II at 100 μM. In addition, docking studies were performed to predict the inhibition mode.  相似文献   

3.
In order to diversify the pharmacological activity of chalcones and extend the scaffold of topoisomerase and cathepsins B and L inhibitors, we have designed and synthesized total 18 chalcone compounds and tested their biological activity. In the topoisomerase inhibition test, most analogues in group III and IV except compound 11 exhibited more efficient topoisomerase I inhibitory activity than camptothecin at 20 μM. Compounds 15, 16 and 18 in group IV showed significant cathepsin B and L inhibitory activity. Among the compounds, compound 15 was most active with IC50 values of 1.81 ± 0.05 μM on cathepsin B and 3.15 ± 0.07 μM on cathepsin L, respectively. Compound 15 also showed most potent cytotoxic activity against T47D and SNU638 cells with IC50 values of 1.37 ± 0.05 μM and 0.62 ± 0.01 μM, respectively. Overall, although more compounds should be tested and analyzed for clear SAR against topoisomerase I and cathepsin B and L, compound 15 showed consistent inhibitory ability on the tested assays, which can implicate the cytotoxic activity of compound 15 on topoisomerase I and cathepsin B and L inhibitory pathways.  相似文献   

4.
We synthesized 12 benzoxanthone derivatives classified as three different groups based on the tetracyclic ring shapes and evaluated their pharmacological activities to find potential anticancer agents. In the cytotoxicity test, most compounds showed effective cancer cell growth inhibition against the HT29 and DU145 cell lines. Among the compounds tested, compound 19 was the most effective in the cancer cell lines tested. Compound 9 showed dual inhibitory activities against DNA relaxation by topoisomerases I and II. The% inhibition of compound 9 on topoisomerase I was comparable to that of camptothecin. Compound 9 efficiently blocked topoisomerase II function by almost threefold than etoposide at 20 μM. Compound 19 had selective topoisomerase II inhibitory activity at 100 μM. The DNA cross-linking test revealed that only compounds 8 and 19, which possess epoxy groups, cross-linked DNA duplex, while 14 did not. From the combined pharmacological results, we proposed that the target through which compound 19 inhibits cancer cell growth may be the DNA duplex itself and/or DNA–topoisomerase II complex.  相似文献   

5.
Designed and synthesized 60 2-thienyl-4-furyl-6-aryl pyridine derivatives were evaluated for their topoisomerase I and II inhibitory activities at 20 μM and 100 μM and cytotoxicity against several human cancer cell lines. Compounds 8, 9, 1129 showed significant topoisomerase II inhibitory activity and compounds 10 and 11 showed significant topoisomerase I inhibitory activity. Most of the compounds (721) possessing 2-(5-chlorothiophen-2-yl)-4-(furan-3-yl) moiety showed higher or similar cytotoxicity against HCT15 cell line as compared to standards. Most of the selected compounds displayed moderate cytotoxicity against MCF-7, HeLa, DU145, and K562 cell lines. Structure–activity relationship study revealed that 2-(5-chlorothiophen-2-yl)-4-(furan-3-yl) moiety has an important role in displaying biological activities.  相似文献   

6.
In an attempt to find potential anticancer agents, a series of novel ethyl 4-(3-(aryl)-1-phenyl-1H-pyrazol-4-yl)-2-oxo-6-(pyridin-3-yl)cyclohex-3-enecarboxylates 5a-i and 5-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-3-(pyridin-3-yl)-4,5-dihydropyrazole-1-carbothioamides 6a-i were designed, synthesized and evaluated for their topoisomerase IIα inhibitory activity and in vitro cytotoxicity against a panel of cancerous cell lines (MCF-7, NCI-H460, HeLa) and a normal cell line (HEK-293T). Molecular docking studies of all the synthesized compounds into the binding site of topoisomerase IIα protein (PDB ID: 1ZXM) were performed to gain a comprehensive understanding into plausible binding modes. These compounds were also screened for in silico drug-likeliness properties on the basis of the absorption, distribution, metabolism and excretion (ADME) prediction. Among all the synthesized compounds, analogue 5d showed superior cytotoxicity with an IC50 value of 7.01 ± 0.60 μM for HeLa, 8.55 ± 0.35 μM for NCI-H460 and 14.31 ± 0.90 for MCF-7 cancer cell lines. Further, compound 5d showed 70.82% inhibition of topoisomerase IIα at a concentration of 100 μM with maximum docking score of −8.24. Results of ADME prediction revealed that most of these compounds showed in silico drug-likeliness properties within the ideal range.  相似文献   

7.
Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50 μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50 = 36.28 ± 0.72 μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor.  相似文献   

8.
A series of substituted aryl pyrimidine derivatives was synthesized and evaluated in vitro for their antileishmanial potential against intracellular amastigotes of Leishmania donovani using reporter gene luciferase assay. Among all, 8 compounds showed promising IC50 values ranging from 0.5 to 12.9 μM. Selectivity indices (S.I.) of all these compounds are far better than reference drugs, sodium stibogluconate (SSG) and miltefosine. On the basis of good S.I., compounds were further screened for their in vivo antileishmanial activity against L. donovani/hamster model. Compounds 2d, 4a and 4b have shown significant inhibition of parasitic multiplication that is 88.4%, 78.1% and 78.2%, respectively at a daily dose of 50 mg/kg × 5 days, when administered intraperitoneally. Compound 2d is most promising one, which may provide a new lead that could be exploited as a new antileishmanial agent.  相似文献   

9.
New Schiff’s base derivatives 5a5h have been synthesized by reaction between 1-(4-bromophenyl)-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanone 3 and various benzohydrazide 4a4h in presence of nickel (II) nitrate as a catalyst in ethanol at room temperature in good yield (54–88%). All compounds were tested for antibacterial as well as anticancer and inhibition of EGFR. Of the compounds studied, compounds 5d, 5f and 5g in the case of antiproliferation and inhibition of EGFR as well as compounds 5b, 5c, 5e and 5h in the case of antibacterial activity were found to be most effective compounds in the series. Compound 5f shows effective inhibition (IC50 = 0.21 ± 0.02 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = ?49.4869 kcal/mol).  相似文献   

10.
A series of pyrazoline derivatives (5) were synthesized in 92–96% yields from chalcones (3) and hydrazides (4). Subsequently, topo-I and IIα-mediated relaxation and antiproliferative activity assays were evaluated for 5. Among the tested compounds, 5h had a very strong topo-I activity of 97% (Camptothecin, 74%) at concentration of 100 μM. Nevertheless, all the compounds 5a5i showed significant topo II inhibitory activity in the range of 90–94% (Etoposide, 96%) at the same concentration. Cytotoxic potential of these compounds was tested in a panel of three human tumor cell lines, HCT15, BT474 and T47D. All the compounds showed strong activity against HCT15 cell line with IC50 at the range of 1.9–10.4 μM (Adriamycin, 23.0; Etoposide, 6.9; and Camptothecin, 7.1 μM). Moreover, compounds 5c, 5f and 5i were observed to have strong antiproliferative activity against BT474 cell lines. Since, compound 5d showed antiproliferative activity at a very low IC50 thus 5d was then selected to study on their mode of action with diverse methods of ATP competition assay, ATPase assay and DNA-topo IIα cleavable complex assay and the results revealed that it functioned as a ATP-competitive human topoisomerase IIα catalytic inhibitor. Further evaluation of endogenous topo-mediated DNA relaxation in cells has been conducted to find that, 5d inhibited endogenous topo-mediated pBR322 plasmid relaxation is more efficient (78.0 ± 4.7% at 50 μM) than Etoposide (36.0 ± 1.7% at 50 μM).  相似文献   

11.
New Schiff’s base derivatives 5aj have been synthesized by reaction between 2-phenoxyquinoline-3-carbaldehydes 3aj and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetohydrazide 4 in presence of nickel(II) nitrate as a catalyst in ethanol under reflux in good yield (78–92%). All compounds were tested for anticancer and inhibition of EGFR. Of the compounds studied, majority of the compounds showed effective antiproliferation and inhibition of EGFR and HER-2 activities. Compound 5h showed most effective inhibition (IC50 = 0.12 ± 0.05 μM) by binding in to the active pocket of EGFR receptor with minimum binding energy (ΔGb = −58.3691 kcal/mol). The binding was stabilized by two hydrogen bonds, two π–cation and one π–sigma interactions. Compound 5d showed most effective inhibition (IC50 = 0.37 ± 0.04 μM).  相似文献   

12.
A new series of 2-phenol-4-chlorophenyl-6-aryl pyridines were designed, synthesized, and evaluated for topoisomerase (topo) I and II inhibitory activities as well as cytotoxic activity against four different human cancer cell lines such as HCT15, T47D, DU145, and Hela. Most of the tested compounds exhibited stronger topo II inhibitory activity at 100 μM as compared to etoposide. All the compounds, except 39, did not show topo I inhibitory activity. Interestingly, compounds that showed better topo II inhibition than etoposide have ortho- or para-chlorophenyl at 4-position of central pyridine, and none of the compounds possess meta-chlorophenyl. SAR study revealed the importance of ortho- or para-chlorophenyl at 4-position of the central pyridine for selective topo II inhibitory activity. Similarly, all compounds possessing meta- or para-hydroxyphenyl moieties showed moderate to significant cytotoxic effects. Particularly, compounds 27–37, and 39 which showed excellent cytotoxicity (IC50 = 0.68–1.25 μM) against T47D breast cancer cells suggest the importance of meta- or para-hydroxyphenyl moiety at 2-position of the central pyridine for the design of anticancer agents with related scaffolds.  相似文献   

13.
Despite the prepdominat agent causing severe entero-pathogenic diarrhea in swine, there are no effective therapeutical treatment of porcine epidemic diarrhea virus (PEDV). In this study, we evaluated the antiviral activity of five phlorotannins isolated from Ecklonia cava (E. cava) against PEDV. In vitro antiviral activity was tested using two different assay strategies: (1) blockage of the binding of virus to cells (simultaneous-treatment assay) and (2) inhibition of viral replication (post-treatment assay). In simultaneous-treatment assay, compounds 25 except compound 1 exhibited antiviral activities of a 50% inhibitory concentration (IC50) with the ranging from 10.8 ± 1.4 to 22.5 ± 2.2 μM against PEDV. Compounds 15 were completely blocked binding of viral spike protein to sialic acids at less than 36.6 μM concentrations by hemagglutination inhibition. Moreover, compounds 4 and 5 of five phlorotannins inhibited viral replication with IC50 values of 12.2 ± 2.8 and 14.6 ± 1.3 μM in the post-treatment assay, respectively. During virus replication steps, compounds 4 and 5 exhibited stronger inhibition of viral RNA and viral protein synthesis in late stages (18 and 24 h) than in early stages (6 and 12 h). Interestingly, compounds 4 and 5 inhibited both viral entry by hemagglutination inhibition and viral replication by inhibition of viral RNA and viral protein synthesis, but not viral protease. These results suggest that compounds isolated from E. cava have strong antiviral activity against PEDV, inhibiting viral entry and/or viral replication, and may be developed into natural therapeutic drugs against coronavirus infection.  相似文献   

14.
In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimum biofilm inhibitory concentration (MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched.  相似文献   

15.
A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)-1H-indene-1,3(2H)-diones were designed, synthesized and appraised as multifunctional anti-Alzheimer agents. In vitro studies of compounds 2738 showed that these compounds exhibit moderate to excellent AChE, BuChE and Aβ aggregation inhibitory activity. Notably, compounds 34 and 38 appeared as most active multifunctional agents in the entire series and exhibited excellent inhibition against AChE (IC50 = 0.048 μM: 34; 0.036 μM: 38), Aβ aggregation (max% inhibition 82.2%, IC50 = 9.2 μM: 34; max% inhibition 80.9%, IC50 = 10.11 μM: 38) and displayed significant antioxidant potential in ORAC-FL assay. Both compounds also successfully diminished H2O2 induced oxidative stress in SH-SY5Y cells. Fascinatingly, compounds 34 and 38 showed admirable neuroprotective effects against H2O2 and Aβ induced toxicity in SH-SY5Y cells. Additionally, both derivatives showed no considerable toxicity in neuronal cell viability assay and represented drug likeness properties in the primarily pharmacokinetics study. All these results together, propelled out that compounds 34 and 38 might serve as promising multi-functional lead candidates for treatment of AD in the future.  相似文献   

16.
A series of 5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazole derivatives was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and for their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. As a representative compound, 16i was a potent and selective ALK5 inhibitor, exhibiting a good enzyme inhibitory activity (IC50 = 5.5 nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC50 = 36 nM). Furthermore, the topical application of 3% 16i lotion significantly inhibited Smad2 phosphorylation in Mouse skin (90% inhibition compared with vehicle-treated animals).  相似文献   

17.
In search of potential therapeutics for inflammatory disease, we report herein the synthesis, characterization and anti-inflammatory activities of a new series of 1-{(5-substituted-1,3,4-oxadiazol-2-yl)methyl}-2-(morpholinomethyl)-1H-benzimidazoles (5a-r). The anti-inflammatory activity of the compounds was evaluated using carrageenan induced rat paw edema test. Some compounds showed excellent anti-inflammatory activity in carrageenan induced rat paw edema test. 1-{(5-(2-Chlorophenyl)-1,3,4-oxadiazol-2-yl)methyl}-2-(morpholinomethyl)-1H-benzimidazole (5g) showed maximum anti-inflammatory (74.17 ± 1.28% inhibition) with reduced ulcerogenic and lipid peroxidation profile and also showed significant COX-2 inhibition with IC50 values of 8.00 μM. Compounds 5o and 5q were also found to exhibit good COX-2 inhibition with IC50 values of 11.4 and 13.7 μM concentrations. Molecular docking study showed that morpholine and oxadiazole rings linked to the benzimidazole nucleus play an important role in binding with the COX-2.  相似文献   

18.
The synthesis, DNA binding characteristics and biological activity of an N-formamido pyrrole- and imidazole-containing H-pin polyamide (f-PIP H-pin, 2) designed to selectively target the ICB2 site on the topoIIα promoter, is reported herein. Thermal denaturation, circular dichroism, isothermal titration calorimetry, surface plasmon resonance and DNase I footprinting studies demonstrated that 2 maintained the selectivity of the unlinked parent monomer f-PIP (1) and with a slight enhancement in binding affinity (Keq = 5 × 105 M?1) to the cognate site (5′-TACGAT-3′). H-pin 2 also exhibited comparable ability to inhibit NF-Y binding to 1, as demonstrated by gel shift studies. However, in stark contrast to monomer 1, the H-pin did not affect the up-regulation of topoisomerase IIα (topoIIα) in cells (Western blot), suggesting that the H-pin does not enter the nucleus. This study is the first to the authors’ knowledge that reports such a markedly different cellular response between two compounds of almost identical binding characteristics.  相似文献   

19.
A series of 24 novel heterocyclic compounds—functionalized at position 4 with aldehyde (5a5f), carboxylic acid (6a6f), nitrile (7a7f) and oxime (8a8f) functional groups—bearing 6-aminosulfonybenzothiazole moiety at position 1 of pyrazole has been synthesized and investigated for the inhibition of four isoforms of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozyme hCA I, compounds 6a6f showed medium-weak inhibitory potential with Ki values in the range of 157–690 nM with 6a showing better potential than the standard drug acetazolamide (AZA). Against hCA II, all the compounds showed excellent to moderate inhibition with Ki values of compounds 5a, 5d, 5f, 6a6f, 8d and 8f lower than 12 nM (Ki of AZA). Against hCA IX, all the compounds showed moderate inhibition with the exception of 6e which showed nearly 9 fold a better profile compared to AZA, whereas against hCA XII, four compounds 6e, 7a, 7b and 7d showed Ki in the same order as that of AZA. Carboxylic acid 6e was found to be an excellent inhibitor of both hCA IX and XII, with Ki values of 2.8 nM and 5.5 nM, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号