首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four different azo dyes were decolourized and biodegraded in a sequential microaerophilic–aerobic treatment by a facultative Klebsiella sp. strain VN-31, a bacterium isolated from activated sludge process of the textile industry. Dye decolourization was performed under microaerophilic conditions until no colour was observed (decolourization percentage >94%). The medium was then aerated to promote the biodegradation of the amines produced. The presence of aromatic amine in the microaerophilic stage and its absence in the aerobic stage demonstrate azo bond reduction and an oxidative biodegradation process, respectively. Total Organic Carbon (TOC) reduction for the growth medium plus dyes was ~50% in the microaerophilic stage and ~80% in the aerobic stage. The degradation products were also characterized by FT-IR and UV–vis techniques and their toxicity measured using Daphnia magna. The results provide evidence that the successive microaerophilic/aerobic stages, using a single Klebsiella sp. strain VN-31 in the same bioreactor, were able to form aromatic amines by the reductive break down of the azo bond and to oxidize them into non-toxic metabolites.  相似文献   

2.
The complete biodegradation of azo dye, Fast Acid Red GR, was observed under microaerophilic conditions by Shewanella decolorationis S12. Although the highest decolorizing rate was measured under anaerobic condition and the highest biomass was obtained under aerobic condition, a further biodegradation of decolorizing products can only be achieved under microaerophilic conditions. Under microaerophilic conditions, S. decolorationis S12 could use a range of carbon sources for azo dye decolorization, including lactate, formate, glucose and sucrose, with lactate being the optimal carbon source. Sulfonated aromatic amines were not detected during the biotransformation of Fast Acid Red GR, while H2S formed. The decolorizing products, aniline, 1,4-diaminobenzene and 1-amino-2-naphthol, were followed by complete biodegradation through catechol and 4-aminobenzoic acid based on the analysis results of GC-MS and HPLC.  相似文献   

3.
A strict aerobic Acinetobacter baumannii YNWH 226, isolated from an activated sludge reactor treating textile wastewater, was able to grow on Congo red as the sole carbon source under aerobic conditions. The decolorization and TOC reduction efficiency were 99.1 and 93.72%, respectively. The effects of the Congo red concentration were studied. The environmental factors (i.e., pH, temperature and agitation speed) on the biodegradation of Congo red in aqueous phase were studied and evaluated using response surface methodology. The results indicated that when the Congo red concentration was 100 mg/L, the optimal decolorization conditions were as follows: 37°C, pH 7.0 and 180 rpm. The single A. baumannii YNWH 226 was able to form aromatic amines by reductive breakage of the azo bond and then oxidize them into non-toxic metabolites.  相似文献   

4.
Acinetobacter calcoaceticus was employed for the degradation of Direct brown MR (DBMR), commercially used azo dye in the textile industry in order to analyze mechanism of the degradation and role of inhibitors, redox mediators and stabilizers of lignin peroxidase during decolorization. Induction of intracellular and extracellular lignin peroxidase, intracellular laccase and DCIP reductase represented their involvement in the biodegradation of DBMR. Decolorization and biodegradation of azo dye DBMR in broth were monitored by UV–visible spectrophotometer and TLC. The products obtained from A. calcoaceticus degradation were characterized by FTIR and identified by GC/MS as biphenyl amine, biphenyl, 3-amino 6-hydroxybenzoic acid and naphthalene diazonium. Germination (%) and growth efficiency of Sorghum vulgare and Phaseolus mungo seeds revealed the degradation of DBMR into less toxic products than original dye. A. calcoaceticus also has a potential to degrade diverse dyes present in the textile effluent, into nontoxic metabolites, hence A. calcoaceticus can be applied for the commercial application.  相似文献   

5.
A novel bacterial consortium (TJ-2) for mineralization of aromatic amines resulting from decolorization of azo dyes was developed. Three bacterial strains were identified as Pseudomonas pseudoalcaligenes (TJ-21,EU072476), Pseudomonas citronellolis (TJ-22,EU072477) and Pseudomonas testosterone (TJ-23,EU072477) by 16S rRNA gene sequence analysis. Aromatic amine mineralization under aerobic conditions was observed to be significantly higher with the consortium as compared to pure strains indicating complementary interactions among these strains. It was observed that more than 90% mineralization of aromatic amines was achieved within 18 h for different initial aromatic amines concentrations. It was also observed that aromatic amine mineralization depends upon the structure of aromatic amine. Para- and meta-hydroxy substituted aromatic amine were easily mineralized as compared to ortho-substituted which undergoes autoxidation when exposed to oxygen. The consortium was capable of mineralizing other aromatic amines, thus, conferring the possibility of application of TJ-2 for the treatment of industrial wastewaters containing aromatic amines.  相似文献   

6.
Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments.  相似文献   

7.
8.
Microbial decolorization and degradation of synthetic dyes: a review   总被引:3,自引:0,他引:3  
The synthesis of dyes and pigments used in textiles and other industries generate the hazardous wastes. A dye is used to impart color to materials of which it becomes an integral part. The waste generated during the process and operation of the dyes commonly found to contain the inorganic and organic contaminant leading to the hazard to ecosystem and biodiversity causing impact on the environment. The amount of azo dyes concentration present in wastewater varied from lower to higher concentration that lead to color dye effluent causing toxicity to biological ecosystem. The physico-chemical treatment does not remove the color and dye compound concentration. The decolorization of the dye takes place either by adsorption on the microbial biomass or biodegradation by the cells. Bioremediation takes place by anaerobic and/or aerobic process. The anaerobic process converts dye in toxic amino compounds which on further treatment with aerobic reaction convert the intermediate into CO2 biomass and inorganics. In the present review the decolorization and degradation of azo dyes by fungi, algae, yeast and bacteria have been cited along with the anaerobic to aerobic treatment processes. The factors affecting decolorization and biodegradation of azo dye compounds such as pH, temperature, dye concentration, effects of CO2 and Nitrogen, agitation, effect of dye structure, electron donor and enzymes involved in microbial decolorization of azo dyes have been discussed. This paper will have the application for the decolorization and degradation of azo dye compound into environmental friendly compounds.  相似文献   

9.
Reduction and biodegradation mechanisms of naphthylaminesulfonic azo dye amaranth using a newly isolated Shewanella decolorationis strain S12 were investigated. Under anaerobic conditions, amaranth was reduced by strain S12, and a stoichiometric amount of two reduction products RP-1 and RP-2 were generated. UV/visible spectrophotometric and high performance liquid chromatography (HPLC) analysis indicated that RP-1 and RP-2 were 1-aminenaphthylene -4-sulfonic acid and 1-aminenaphthylene-2-hydroxy-3, 6-disulfonic acid. The result strongly supports a mechanism of azo dye reduction by the process via the reductive cleavage of the azo bond to form corresponding aromatic amines. The result of HPLC analyses revealed that these aromatic amines were not able to be mineralized by strain S12 under anaerobic conditions. But after re-aeration of the decolorized culture, RP-2 was mineralized completely by this microorganism, but the consumption of RP-1 was not observed. Ames test showed that amaranth had mutagenic but no cytotoxic potential. The mutagenic potential was relieved after the anaerobic treatment with strain S12 as the mutagenic effect of the two reduction products from amaranth was not detected by Ames test. Thus, the ability of strain S12 to reduce and partially mineralize the naphthylaminesulfonic azo dye efficiently was demonstrated, which can potentially be used to biodegrade and detoxify wastewater containing azo dyes using an alternating anaerobic/aerobic treatment procedure.  相似文献   

10.
Ligninolytic bacteria degrading lignin were isolates and identified, and their biodegradation mechanism of alkaline-lignin was investigated. Four strains with lignin degradation capability were screened and identified from the soil, straw, and silage based on their decolorizing capacity of aniline blue and colony size on alkaline-lignin medium. The degradation ratio of Bacillus aryabhattai BY5, Acinetobacter johnsonii LN2, Acinetobacter lwoffii LN4, and Micrococcus yunnanensis CL32 have been assayed using alkaline-lignin as the unique carbon source. Further, the Lip (lignin peroxidase) and Mnp (manganese peroxidase) activities of strains were investigated. Lip activity of A. lwoffii LN4 was highest after 72 h of incubation and reached 7151.7 U · l–1. Mnp activity of M. yunnanensis CL32 was highest after 48 h and reached 12533 U · l–1. The analysis of alkaline-lignin degradation products by GC-MS revealed that the strains screened could utilize aromatic esters compounds such as dibutyl phthalate (DBP), and decomposite monocyclic aromatic compounds through the DBP aerobic metabolic pathway. The results indicate that B. aryabhattai BY5, A. johnsonii LN2, A. lwoffii LN4, and M. yunnanensis CL32 have high potential to degrade alkaline-lignin, and might utilize aromatic compounds by DBP aerobic metabolic pathway in the process of lignin degradation.Key words: isolation, bacteria, alkali-lignin, biodegradation products  相似文献   

11.
In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.  相似文献   

12.
Polybrominated diphenyl ethers (PBDEs) are bioaccumulative, toxic and persistent, globally distributed organic chemicals in environment. However, very little is known for their aerobic biodegradation. In this research, 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) was selected as a model congener of PBDEs to study its aerobic biodegradation. A new BDE-47 degrading strain BFR01 identified as Pseudomonas stutzeri was isolated from polluted soil in a former brominated flame retardant production corporation. Stain BFR01 could utilize BDE-47 as a sole source of carbon and energy, and transformed 97.94% of BDE-47 in two weeks; the biodegradation of BDE-47 fitted well with the first-order kinetics, with the first-order kinetics constant of 0.32 d−1. The biodegradation efficiency of stain BFR01 was higher than other reported PBDEs aerobic degrading bacteria. The biodegradation efficiency achieved maximum at pH 7.0 and 40 °C. The presence of additional carbon sources could enhance the biodegradation efficiency of BDE-47 by 1–6%. Furthermore, no lower brominated diphenyl ethers or biphenyl were detected, suggesting that the pathway of BDE-47 biodegradation by strain BFR01 might not be debromination with lower brominated diphenyl ethers as products. This is the first report of aerobic degradation of BDE-47 by P. stutzeri.  相似文献   

13.
Several model azo dyes are reductively cleaved by growing cultures of an ascomycete yeast species, Issatchenkia occidentalis. In liquid media containing 0.2 mM dye and 2% glucose in a mineral salts base, more than 80% of the dyes are removed in 15 h, essentially under microaerophilic conditions. Under anoxic conditions, decolorization does not occur, even in the presence of pregrown cells. Kinetic assays of azo reduction activities in quasi-resting cells demonstrated the following: (i) while the optimum pH depends on dye structure, the optimum pH range was observed in the acidic range; (ii) the maximum decolorizing activity occurs in the late exponential phase; and (iii) the temperature profile approaches the typical bell-shaped curve. These results indirectly suggest the involvement of an enzyme activity in azo dye reduction. The decolorizing activity of I. occidentalis is still observed, although at a lower level, when the cells switch to aerobic respiration at the expense of ethanol after glucose exhaustion in the culture medium. Decolorization ceased when all the ethanol was consumed; this observation, along with other lines of evidence, suggests that azo dye reduction depends on cell growth. Anthraquinone-2-sulfonate, a redox mediator, enhances the reduction rates of the N,N-dimethylaniline-based dyes and reduces those of the 2-naphthol-based dyes, an effect which seems to be compatible with a thermodynamic factor. The dye reduction products were tested as carbon and nitrogen sources. 1-Amino-2-naphthol was used as a carbon and nitrogen source, and N,N-dimethyl-p-phenylenediamine was used only as a nitrogen source. Sulfanilic and metanilic acids did not support growth either as a carbon or nitrogen source.  相似文献   

14.
Aim: The goal of this study was to compare the degradation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0·04 mg l?1 dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l?1) conditions. Methods and Results: Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60‐fold slower than under fully aerobic conditions. Only the breakdown product, 4‐nitro‐2,4‐diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l?1) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. Conclusions: The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. Impact and Significance of the Study: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.  相似文献   

15.
The potential for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at low temperature and under anaerobic conditions is not well understood, but such biodegradation would be very useful for remediation of polluted sites. Biodegradation of a mixture of 11 different PAHs with two to five aromatic rings, each at a concentration of 10 μg/ml, was studied in enrichment cultures inoculated with samples of four northern soils. Under aerobic conditions, low temperature severely limited PAH biodegradation. After 90 days, aerobic cultures at 20°C removed 52 to 88% of the PAHs. The most extensive PAH degradation under aerobic conditions at 7°C, 53% removal, occurred in a culture from creosote-contaminated soil. Low temperature did not substantially limit PAH biodegradation under nitrate-reducing conditions. Under nitrate-reducing conditions, naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene were degraded. The most extensive PAH degradation under nitrate-reducing conditions at 7°C, 39% removal, occurred in a culture from fuel-contaminated Arctic soil. In separate transfer cultures from the above Arctic soil, incubated anaerobically at 7°C, removal of 2-methylnaphthalene and fluorene was stoichiometrically coupled to nitrate removal. Ribosomal intergenic spacer analysis suggested that enrichment resulted in a few predominant bacterial populations, including members of the genera Acidovorax, Bordetella, Pseudomonas, Sphingomonas, and Variovorax. Predominant populations from different soils often included phylotypes with nearly identical partial 16S rRNA gene sequences (i.e., same genus) but never included phylotypes with identical ribosomal intergenic spacers (i.e., different species or subspecies). The composition of the enriched communities appeared to be more affected by presence of oxygen, than by temperature or source of the inoculum.  相似文献   

16.
Bacteria capable of degrading the sulfonated azo dye Red HE7B were isolated from textile mill effluent contaminated soil. The most efficient isolate was identified as Bacillus sp. Azo1 and the isolate could successfully decolorize up to 89 % of the dye. The decolorized cultural extract analyzed by HPLC confirmed degradation. Enzymatic analysis showed twofold and fourfold increase in the activity of azoreductase and laccase enzymes, respectively, indicating involvement of both reductive and oxidative enzymes in biodegradation of Red HE7B. Degraded products which were identified by GC/MS analysis included various metabolites like 8-nitroso 1-naphthol, 2-diazonium naphthalene. Mono azo dye intermediate was initially generated from the parent molecule. This mono azo dye was further degraded by the organism, into additional products, depending on the site of cleavage of R–N=N–R molecule. Based on the degradation products identified, three different pathways have been proposed. The mechanism of degradation in two of these pathways is different from that of the previously reported pathway for azo dye degradation. This is the first report of a microbial isolate following multiple pathways for azo dye degradation. Azo dye Red HE7B was observed to be phytotoxic, leading to decrease in root development, shoot length and seedling fresh weight. However, after biotreatment the resulting degradation products were non-phytotoxic.  相似文献   

17.
The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic / anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.  相似文献   

18.
染料脱色菌与芳胺降解菌的筛选及降解染料研究   总被引:1,自引:0,他引:1  
从印染厂废水处理系统的曝气池中分离到17株对多种染料有较高脱色能力的细菌,其脱色率都在80%以上,但偶氮染料脱色后产生的中间产物多数为无色的芳香胺类化合物,大多数细菌不能将其进一步降解。为此,通过富集培养和梯度驯化又筛选到一株以对硝基苯胺为唯一碳、氮源的菌株J18,该菌株虽对染料脱色能力很弱,却能够降解芳香胺类化合物。将芳香胺降解菌J18与染料脱色菌H两菌株混合培养,在最适条件下,结果使染料的脱色率和芳胺降解率均到达90%和85%以上,从而达到了彻底降解染料的目的。  相似文献   

19.
Dinoseb (2-sec-butyl-4,6-dinitrophenol) has been a widely used herbicide that persists in some contaminated soils, and has been found in groundwaters, causing health and environmental hazards. Persistence in some soils may stem from a lack of dinoseb-degrading organisms. We established a chemostat environment that was strongly selective for aerobic (liquid phase) and anaerobic (sediment phase) bacteria able to degrade dinoseb. The chemostat yielded five taxonomically diverse aerobic isolates that could transform dinoseb to reduced products under microaerophilic or denitrifying conditions, but these organisms were unable to degrade the entire dinoseb molecule, and the transformed products formed multimeric material. The chemostat also yielded an anaerobic consortium of bacteria that could completely degrade dinoseb to acetate and CO2 when the Eh of the medium was less than-200 mV. The consortium contained at least three morphologically different bacterial species. HPLC analysis indicated that dinoseb was degraded sequentially via several as yet unidentified products. Degradation of these intermediates was inhibited by addition of bromoethane sulfonic acid. GC-MS analysis of metabolites in culture medium suggested that regiospecific attacks occurred non-sequentially on both the nitro groups and the side-chain of dinoseb. The consortium was also able to degrade 4,6-dinitro-o-cresol, 3,5-dinitrobenzoic acid, 2,4-dinitrotoluene, and 2,6-dinitrotoluene via a similar series of intermediate products. The consortium was not able to degrade 2,4-dinitrophenol. To our knowledge, this is the first report of strictly anaerobic biodegradation of an aromatic compound containing a multicarbon, saturated hydrocarbon side chain.Abbreviations BESA bromoethane sulfonic acid - RAMM reduced anaerobic mineral medium  相似文献   

20.
Azo compounds constitute the largest and the most diverse group of synthetic dyes and are widely used in a number of industries such as textile, food, cosmetics and paper printing. They are generally recalcitrant to biodegradation due to their xenobiotic nature. However microorganisms, being highly versatile, have developed enzyme systems for the decolorization and mineralization of azo dyes under certain environmental conditions. Several genera of Basidomycetes have been shown to mineralize azo dyes. Reductive cleavage of azo bond, leading to the formation of aromatic amines, is the initial reaction during the bacterial metabolism of azo dyes. Anaerobic/anoxic azo dye decolorization by several mixed and pure bacterial cultures have been reported. Under these conditions, this reaction is non-specific with respect to organisms as well as dyes. Various mechanisms, which include enzymatic as well as low molecular weight redox mediators, have been proposed for this non-specific reductive cleavage. Only few aerobic bacterial strains that can utilize azo dyes as growth substrates have been isolated. These organisms generally have a narrow substrate range. Degradation of aromatic amines depends on their chemical structure and the conditions. It is now known that simple aromatic amines can be mineralized under methanogenic conditions. Sulfonated aromatic amines, on the other hand, are resistant and require specialized aerobic microbial consortia for their mineralization. This review is focused on the bacterial decolorization of azo dyes and mineralization of aromatic amines, as well as the application of these processes for the treatment of azo-dye-containing wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号