首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azo dyes are important chemical pollutants of industrial origin. Textile azo dyes with bioaccessible groups for lignin degrading fungi, such as 2-methoxyphenol (guaiacol) and 2,6-dimethoxyphenol (syringol), were synthesised using different aminobenzoic and aminosulphonic acids as diazo components. The inocula of the best biodegradation assays were obtained from a pre-growth medium (PAM), containing one of the synthesised dyes. The results of the dye biodegradation assays were evaluated every 7 days, by the decrease of the absorbance at the maximum wavelength of the dye, by the decrease of the sucrose concentration in the culture medium and by the increase of the biomass during the 28 days of assay. It was observed that the extent of dye biodegradation depended on the sucrose concentration, on the degraded dye structure and, on the dye present in the PAM medium.  相似文献   

2.
Azo dyes are important chemical pollutants of industrial origin. Textile azo dyes with bioaccessible groups for lignin degrading fungi, such as 2-methoxyphenol (guaiacol) and 2,6-dimethoxyphenol (syringol), were synthesised using different aminobenzoic and aminosulphonic acids as diazo components. The inocula of the best biodegradation assays were obtained from a pre-growth medium (PAM), containing one of the synthesised dyes. The results of the dye biodegradation assays were evaluated every 7 days, by the decrease of the absorbance at the maximum wavelength of the dye, by the decrease of the sucrose concentration in the culture medium and by the increase of the biomass during the 28 days of assay. It was observed that the extent of dye biodegradation depended on the sucrose concentration, on the degraded dye structure and, on the dye present in the PAM medium.  相似文献   

3.
The decolorization potential of two bacterial consortia developed from a textile wastewater treatment plant showed that among the two mixed bacterial culture SKB-II was the most efficient in decolorizing individual as well as mixture of dyes. At 1.3 g L?1 starch supplementation in the basal medium by the end of 120 h decolorization of 80–96% of four out of the six individual azo dyes Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC (10 mg L?1) was noted. The culture exhibited good potential ability in decolorizing 50–60% of all the dyes (Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC) when present as a mixture at 10 mg L?1. The consortium SKB-II consisted of five different bacterial types identified by 16S rDNA sequence alignment as Bacillus vallismortis, Bacillus pumilus, Bacillus cereus, Bacillus subtilis and Bacillus megaterium which were further tested to decolorize dyes. The efficient ability of this developed consortium SKB-II to decolorize individual dyes and textile effluent using packed bed reactors is being carried out.  相似文献   

4.
The degradation of an azo dye mixture by an aerobic bacterial consortium was studied in a rotating biological reactor. Laterite pebbles of particle size 850 microm to 1.44 mm were fixed on gramophone records using an epoxy resin on which the developed consortium was immobilized. Rate of degradation, BOD, biomass determination, enzymes involved, and fish bioassay were studied. The RBC has a high efficiency for dye degradation even at high dye concentrations (100 microg/mL) and high flow rate (36 L/h) at alkaline pH and salinity conditions normally encountered in the textile effluents. Bioassays (LD-50) using Thilapia fish in treated effluent showed that the percentage mortality was zero over a period of 96 h, whereas the mortality was 100% in untreated dye water within 26 h. Fish bioassay confirms that the effluent from RBC can be discharged safely to the environment.  相似文献   

5.
This study is a part of efforts to develop new batch method with the help of prepared consortium GG-BL using two microbial cultures viz. Galactomyces geotrichum MTCC 1360 and Brevibacillus laterosporus NCIM 2298, varying oxidation conditions for the bio-treatment processes to produce reusable water by decolorization of Golden Yellow HER (GYHER) to less toxic metabolites. Consortium was found to be much faster for decolorization and degradation of GYHER as compared to the individual strains. The intensive metabolic activity of these strains led to 100% decolorization of GYHER (50 mg l−1) within 24 h with significant reduction in chemical oxygen demand (84%) and total organic carbon (63%). The presence of veratryl alcohol oxidase, NADH-DCIP reductase and induction in laccase, tyrosinase, azo reductase and riboflavin reductase during decolorization suggests their role in decolorization process. Substrate staining of nondenaturing polyacrylamide electrophoresis gel (PAGE) also confirms induction of oxidative enzymes during GYHER degradation. The degradation of the GYHER into different metabolites by individual organism and in consortium was confirmed using High Performance Thin Layer Chromatography (HPTLC), High Performance Liquid Chromatography (HPLC), Fourier Transform Infra Red Spectroscopy (FTIR), Gas Chromatography Mass Spectroscopy (GC–MS) analysis. Phytotoxicity studies revealed nontoxic nature of the metabolites of GYHER.  相似文献   

6.
Biodegradation perspectives of azo dyes by yeasts   总被引:1,自引:0,他引:1  
Azo dyes are the largest class of synthetic dyes, which are widely used in the textile industry. The amount of dyestuff does not bind to the fibers and is lost in wastewater during textile processing. The discharge of colored effluents into the environment is not only aesthetically unpleasing. Moreover, dyes and their break-down products cause toxic effects and they affect photosynthetic activity of aquatic systems by reducing light penetration. A number of microorganisms belonging to different taxonomic groups of bacteria, algae, fungi and yeast have been reported for their ability to decolorize azo dyes. In the literature the ability to decolorize azo dyes by yeasts, compared to bacterial and fungal species, has been studied in a few reports. Within this review, an attempt is made to elucidate some basic biological aspects associated with the azo dye degradation by yeasts and enzymes involved that are responsible for degradation process.  相似文献   

7.
Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium   总被引:29,自引:0,他引:29  
Biodegradation of Orange II, Tropaeolin O, Congo Red, and Azure B in cultures of the white rot fungus, Phanerochaete chrysosporium, was demonstrated by decolarization of the culture medium, the extent of which was determined by monitoring the decrease in absorbance at or near the wavelength maximum for each dye. Metabolite formation was also monitored. Decolorization of these dyes was most extensive in ligninolytic cultures, but substantial decolorization also occurred in nonligninolytic cultures. Incubation with crude lignin peroxidase resulted in decolorization of Azure B, Orange II, and Tropaeolin O but not Congo Red, indicating that lignin peroxidase is not required in the initial step of Congo Red degradation.  相似文献   

8.
Summary Basidiomycete PV 002, a recently isolated white-rot strain from decomposed neem waste displayed high extracellular peroxidase and rapidly decolorized azo dyes. In this study, the optimal culture conditions for efficient production of ligninolytic enzymes were determined with respect to carbon and nitrogen. An additional objective was to determine the efficiency of PV 002 to degrade the azo dyes. White-rot strain PV 002 efficiently decolorized Ranocid Fast Blue (96%) and Acid Black 210 (70%) on day 5 and 9 respectively under static conditions. The degradation of azo dyes under different conditions was strongly correlated with the ligninolytic activity. The optimum growth temperature of strain PV 002 was 26 °C and pH 7.0.  相似文献   

9.
Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process   总被引:10,自引:0,他引:10  
Nitrobenzene was completely degraded by mixed cultures using a sequential anaerobic-aerobic treatment process. Under anaerobic conditions in a fixed-bed column aniline was formed from nitrobenzene through gratuitous reduction by cells of sewage sludge. This reaction was accelerated by the addition of glucose. Complete mineralization of aniline was accomplished by subsequent aerobic treatment using activated sludge as inoculum. The maximum degradation rate of nitrobenzene (4.5 mM) in the two-stage system was 552 mg l–1d–1, referring to 154 mg of nitrobenzene per gram of glucose. In a second experimental phase glucose as cosubstrate and H-donor was replaced by synthetic waste containing ethanol, methanol, isopropanol and acetone. Again, nitrobenzene (1.9 mM) was completely degraded (maximum degradation rate of 237 mg ld–1, referring to 251 mg per gram of solvents). The major advantage of the described two-stage process is that the reduction of nitrobenzene by anaerobic pretreatment drastically reduces emission by stripping during aerobic treatment.Abbreviations HRT hydraulic retention time - OD546 optical density at 546 nm  相似文献   

10.
C Cripps  J A Bumpus    S D Aust 《Applied microbiology》1990,56(4):1114-1118
Biodegradation of Orange II, Tropaeolin O, Congo Red, and Azure B in cultures of the white rot fungus, Phanerochaete chrysosporium, was demonstrated by decolarization of the culture medium, the extent of which was determined by monitoring the decrease in absorbance at or near the wavelength maximum for each dye. Metabolite formation was also monitored. Decolorization of these dyes was most extensive in ligninolytic cultures, but substantial decolorization also occurred in nonligninolytic cultures. Incubation with crude lignin peroxidase resulted in decolorization of Azure B, Orange II, and Tropaeolin O but not Congo Red, indicating that lignin peroxidase is not required in the initial step of Congo Red degradation.  相似文献   

11.
A prerequisite for the mineralization (complete biodegradation) of many azo dyes is a combination of reductive and oxidative steps. In this study, the biodegradation of two azo dyes, 4-phenylazophenol (4-PAP) and Mordant Yellow 10 (4-sulfophenylazo-salicylic acid; MY10), was evaluated in batch experiments where anaerobic and aerobic conditions were integrated by exposing anaerobic granular sludge to oxygen. Under these conditions, the azo dyes were reduced, resulting in a temporal accumulation of aromatic amines. 4-Aminophenol (4-AP) and aniline were detected from the reduction of 4-PAP. 5-Aminosalicylic acid (5-ASA) and sulfanilic acid (SA) were detected from the reduction of MY10. Subsequently, aniline was degraded further in the presence of oxygen by the facultative aerobic bacteria present in the anaerobic granular sludge. 5-ASA and SA were also degraded, if inocula from aerobic enrichment cultures were added to the batch experiments. Due to rapid autoxidation of 4-AP, no enrichment culture could be established for this compound. The results of this study indicate that aerobic enrichment cultures developed on aromatic amines combined with oxygen-tolerant anaerobic granular sludge can potentially be used to completely biodegrade azo dyes under integrated anaerobic/aerobic conditions. Received: 16 September 1998 / Received revision: 14 December 1998 / Accepted: 21 December 1998  相似文献   

12.
The complete biodegradation of azo dye, Fast Acid Red GR, was observed under microaerophilic conditions by Shewanella decolorationis S12. Although the highest decolorizing rate was measured under anaerobic condition and the highest biomass was obtained under aerobic condition, a further biodegradation of decolorizing products can only be achieved under microaerophilic conditions. Under microaerophilic conditions, S. decolorationis S12 could use a range of carbon sources for azo dye decolorization, including lactate, formate, glucose and sucrose, with lactate being the optimal carbon source. Sulfonated aromatic amines were not detected during the biotransformation of Fast Acid Red GR, while H2S formed. The decolorizing products, aniline, 1,4-diaminobenzene and 1-amino-2-naphthol, were followed by complete biodegradation through catechol and 4-aminobenzoic acid based on the analysis results of GC-MS and HPLC.  相似文献   

13.
Eighteen fungal strains, known for their ability to degrade lignocellulosic material or lignin derivatives, were screened for their potential to decolorize commercially used reactive textile dyes. Three azo dyes, Reactive Orange 96, Reactive Violet 5 and Reactive Black 5, and two phthalocyanine dyes, Reactive Blue 15 and Reactive Blue 38, were chosen as representatives of commercially used reactive dyes. From the 18 tested fungal strains only Bjerkandera adusta, Trametes versicolor and Phanerochaete chrysosporium were able to decolorize all the dyes tested. During degradation of the nickel-phthalocyanine complex, Reactive Blue 38, by B. adusta and T. versicolor respectively, the toxicity of this dye to Vibrio fischeri was significantly reduced. In the case of Reactive Violet 5, a far-reaching detoxification was achieved by treatment with B. adusta. Reactive Blue 38 and Reactive Violet 5 were decolorized by crude exoenzyme preparations from T. versicolor and B. adusta in a H2O2-dependent reaction. Specific activities of the exoenzyme preparations with the dyes were determined and compared to oxidation rates by commercial horseradish peroxidase. Received: 3 February 1997 / Received revision: 9 April 1997 / Accepted: 13 April 1997  相似文献   

14.
Phylogenetic analysis of a bacterial aerobic degrader of azo dyes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Eubacterial consensus oligonucleotide primers were used to amplify by polymerase chain reaction the nearly full-length 16S rRNA gene of isolate C7, a gram-negative rod capable of aerobic degradation of azo dyes. The DNA product was cloned and sequenced. Phylogenetic analysis based upon this DNA sequence places C7 within the alpha subdivision of proteobacteria, most closely related to Caulobacter subvibrioides. The phospholipid fatty acid pattern resembles that of caulobacters, with monounsaturated 16- and 18-carbon fatty acids predominating. C7 is unusual in having a monounsaturated branched fatty acid in the phospholipids and exclusively 2-hydroxy fatty acids in the lipid-extracted residue. This organism is of potential use in bioreactors operated for azo dye degradation.  相似文献   

15.
Studies were carried out on the decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Among the 27 strains of halophilic and halotolerant bacteria isolated from effluents of textile industries, three showed remarkable ability in decolorizing the widely utilized azo dyes. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that these strains belonged to the genus Halomonas. The three strains were able to decolorize azo dyes in a wide range of NaCl concentration (up to 20%w/v), temperature (25-40 degrees C), and pH (5-11) after 4 days of incubation in static culture. They could decolorize the mixture of dyes as well as pure dyes. These strains also readily grew in and decolorized the high concentrations of dye (5000 ppm) and could tolerate up to 10,000 ppm of the dye. UV-Vis analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. Analytical studies based on HPLC showed that the principal decolorization was reduction of the azo bond, followed by cleavage of the reduced bond.  相似文献   

16.
In this paper, two microbial cultures with high decolorization efficiencies of reactive dyes were obtained and were proved to be dominant with fungi consortium in which 21 fungal strains were isolated and 8 of them showed significant decolorization effect to reactive red M-3BE. A 4.5 l continuous biofilm reactor was established using the mixed cultures to investigate the decolorization performance and the system stability under the conditions of simulated and real textile wastewater as influents. The optimal nutrient feed to this bioreactor was 0.5 g l−1 glucose and 0.1 g l−1 (NH4)2SO4 when 30 mg l−1 reactive black 5 was used as initial dye concentrations. Dye mineralization rates of 50–75% and color removal efficiencies of 70–80% were obtained at 12 h hydraulic retention time (HRT) in this case. Higher glucose concentrations in the influents could significantly improve color removal, but was not helpful for dye mineralization. Besides reactive black 5, the bioreactor could effectively decolorize reactive red M-3BE, acid red 249 and real textile wastewater with efficiency of 65%, 94% and 89%, respectively. In addition, the microbial community on the biofilm was monitored in the whole running process. The results indicated fungi as a dominant population in the decolorization system with the ratio of fungi to bacteria 6.8:1 to 51.8:1 under all the tested influent conditions. Analysis of molecular biological detection indicated that yeasts of genus Candida occupied 70% in the fungal clone library based on 26S rRNA gene sequences.  相似文献   

17.
18.
Textile wastewater from the Pusan Dyeing Industrial Complex (PDIC) was treated utilizing a two-stage continuous system, composed of an upflow anaerobic sludge blanket reactor and an activated sludge reactor. The effects of color and organic loading rates were studied by varying the hydraulic retention time and influent glucose concentration. The maximum color load to satisfy the legal discharge limit of color intensity in Korea (400 ADMI, unit of the American Dye Manufacturers Institute) was estimated to be 2,700 ADMI·L−1 day−1. This study indicates that the two-stage anaerobic/aerobic reaction system is potentially useful in the treatment of textile wastewater.  相似文献   

19.
Sphingomonas sp strain 1CX was isolated from a wastewater treatment plant and is capable of aerobically degrading a suite of azo dyes, using them as a sole source of carbon and nitrogen. All azo dyes known to be decolorized by strain 1CX (Orange II, Acid Orange 8, Acid Orange 10, Acid Red 4, and Acid Red 88) have in their structure either 1-amino-2-naphthol or 2-amino-1-naphthol. In addition, an analysis of the structures of the dyes degraded suggests that there are certain positions and types of substituents on the azo dye which determine if degradation will occur. Growth and dye decolorization occurs only aerobically and does not occur under fermentative or denitrification conditions. The mechanism by which 1CX decolorizes azo dyes appears to be through reductive cleavage of the azo bond. In the case of Orange II, the initial degradation products were sulfanilic acid and 1-amino-2-naphthol. Sulfanilic acid, however, was not used by 1CX as a growth substrate. The addition of glucose or inorganic nitrogen inhibited growth and decoloration of azo dyes by 1CX. Attempts to grow the organism on chemically defined media containing several different amino acids and sugars as sources of nitrogen and carbon were not successful. Phylogenetic analysis of Sphingomonas sp strain 1CX shows it to be related to, but distinct from, other azo dye-decolorizing Sphingomonas spp strains isolated previously from the same wastewater treatment facility. Received 19 May 1999/ Accepted in revised form 11 August 1999  相似文献   

20.
One laccase-secreting engineered strain and four white-rot fungi were tested for their capacity to decolorize nine dyes that could be classified as azo, anthraquinonic and triphenylmethane dyes. Trametes versicolor was the most efficient of the tested strains under these experimental conditions. Anthraquinonic dyes were decolorized more easily than the other two types. Small structural differences among the dyes could significantly affect decolorization. None of the strains showed lignin peroxidase or veratryl alcohol oxidase activity. None of the dyes were decolorized completely by laccase alone. It is likely that other phenoloxidases, such as Mn-dependent and versatile peroxidase, were also involved in decolorization of the dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号