首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of Rhodococcus ruber cells on columns with poly(acrylamide) cryogel (cryoPAAG) partially hydrophobized by different quantities (0.2, 1, and 5, mol %) of chemically grafted n-dodecane residues has been studied. The adsorption capacity (1.1 × 109 cells/g) of gel carrier for rhodococcal cells and the optimal content (1 mol %) of hydrophobizing groups were determined. The respirometric method showed the high catalytic activity and functional stability of immobilized bacterial cells. Respiratory activity of immobilized rhodococci in the presence of a model mixture of oil hydrocarbons exceeded the respective parameter for free cells by 12–17%. Viability of rhodococcal cells adsorptionally fixed in hydrophobized cryoPAAG was maintained at a level of 93–95% after a half-year period of storage. The results may be used for development of immobilized biocatalyst for directed transformation of hydrocarbon compounds and biological purification of oil-polluted water.  相似文献   

2.
A simple biosurfactant-based hydrophobization procedure for poly(vinyl alcohol) (PVA) cryogels was developed allowing effective immobilization of hydrocarbon-oxidizing bacteria. The resulting partially hydrophobized PVA cryogel granules (granule volume 5 microl) contained sufficient number (6.5 x 10(3)) of viable bacterial cells per granule, possessed high mechanical strength and spontaneously located at the interface in water-hydrocarbon system. Such interfacial location of PVA granules allowed high contact of immobilized biocatalyst with hydrophobic substrate and water phase, thus providing bacterial cells with mineral and organic nutrients. As a result, n-hexadecane oxidation efficiency of 51% after 10-day incubation was achieved using immobilized biocatalyst. PVA cryogels with increased hydrophobicity can be used for immobilization of bacterial cultures performing oxidative transformations of water-immiscible organic compounds. Immobilization of in situ biosurfactant producing Rhodococcus bacteria into PVA cryogel is discussed. PVA cryogel granules with entrapped alkanotrophic rhodococcal cells were stable after 10-month storage at room temperature.  相似文献   

3.
Adsorption of Rhodococcus ruber cells on columns with polyacrylamide cryogel (CryoPAAG) partially hydrophobized by different quantities (0.2, 1, and 5 mol %) of chemically grafted n-dodecane residues has been studied. The adsorption capacity (1.1 x 10(9) cells/g) of gel carrier for rhodococcal cells and the optimal content (1 mol %) of hydrophobizing groups were determined. The respirometric method showed the high catalytic activity and functional stability of immobilized bacterial cells. Respiratory activity of immobilized rhodococci in the presence of a model mixture of oil hydrocarbons exceeded the respective parameter for free cells by 12-17%. Viability of rhodococcal cells adsorptionally fixed in hydrophobized cryoPAAG was maintained at a level of 93-95% after a half-year period of storage. The results may be used for development of immobilized biocatalyst for directed transformation of hydrocarbon compounds and biological purification of oil-polluted water.  相似文献   

4.
A possible adaptation of the association of Rhodococcus ruber and Rhodococcus opacus strains immobilized on modified sawdust to oil hydrocarbons in a column bioreactor was investigated. In the bioreactor, the bacterial population showed higher hydrocarbon and antibiotic resistance accompanied by the changes in cell surface properties (hydrophobicity, electrokinetic potential) and in the content of cellular lipids and biosurfactants. The possibility of using adapted Rhodococcus strains for the purification of oil-polluted water in the bioreactor was demonstrated.  相似文献   

5.
The possible use of a consortium of actinobacteria from the genus Rhodococcus immobilized on a polymeric carrier has been investigated for oilfield wastewater treatment in a bioreactor. It has been found that Rhodococcus opacus IEGM 263 and Rhodococcus ruber IEGM 231 cells remain viable at high concentrations of mineral salts in water and are able to oxidize oil hydrocarbons up to 62–81%. It has been shown that the consortium of rhodococci was more efficient in the elimination of hydrocarbons from wastewater than monocultures.  相似文献   

6.
Immobilization of microorganisms on/in insoluble carriers is widely used to stabilize functional activity of microbial cells in industrial biotechnology. We immobilized Rhodococcus ruber, an important hydrocarbon degrader, on biosurfactant-coated sawdust. A biosurfactant produced by R. ruber in the presence of liquid hydrocarbons was found to enhance rhodococcal adhesion to solid surfaces, and thus, it was used as a hydrophobizing agent to improve bacterial attachment to a sawdust carrier. Compared to previously used hydrophobizers (drying oil and n-hexadecane) and emulsifiers (methyl- and carboxymethyl cellulose, poly(vinyl alcohol), and Tween 80), Rhodococcus biosurfactant produced more stable and homogenous coatings on wood surfaces, thus resulting in higher sawdust affinity to hydrocarbons, uniform monolayer distribution of immobilized R. ruber cells (immobilization yield 29–30 mg dry cells/g), and twofold increase in hydrocarbon biooxidation rates compared to free rhodococcal cells. Two physical methods, i.e., high-resolution profilometry and infrared thermography, were applied to examine wood surface characteristics and distribution of immobilized R. ruber cells. Sawdust-immobilized R. ruber can be used as an efficient biocatalyst for hydrocarbon transformation and degradation.  相似文献   

7.
The intrinsic depuration capability of a soil contaminated by polycyclic aromatic hydrocarbons (PAHs) originating from a contaminated industrial site was evaluated in this study by using different aerobic batch bioreactors: a slurry‐phase bioreactor, a blade‐agitated bioreactor, and a rotary vessel bioreactor. For each bioreactor, the disappearance of 14 target PAHs and of the total extractable organic matter was monitored. The three treatments exhibited rapid and extensive removal of the PAHs, which disappeared at different degradation rates according to their molecular weight and aromaticity degree. PAHs with two, three, and four aromatic rings were degraded in sequence, with average rates that generally decreased as the number of molecule rings increased. A slight increase in the bacterial biomass concentration and significant CO2 production were also observed during the time course of the treatments. Among the three treatments, the slurry‐phase system provides the most effective and fastest removal of the PAHs and the organic extractable matter. However, the semisolid‐phase systems exhibited PAH depletion, capabilities higher than those reported in the literature for soils with similar particle size distribution in solid‐phase conditions.  相似文献   

8.
The toxicities of three oil products with boiling-point ranges representative of petroleum hydrocarbons were tested on earthworms (Eisenia fetida) to investigate the correlation between bioaccumulated concentrations of polycyclic aromatic hydrocarbons (PAHs) and toxicity. The toxicities to earthworms were in the sequence: kerosene > diesel > bunker-C. After 14 days, the LC50s of the soils contaminated with kerosene, diesel, and bunker-C were 1079, 9135, and 15,609 mg/kg, respectively. Analysis of the body residue concentrations of PAHs in the earthworms showed that the accumulation of alkyl PAHs predominated that of the 16 priority PAHs. Principal component analysis (PCA) identified 12 PAHs, including four alkylated naphthalenes, as the oil constituents that affected mortality in the kerosene-contaminated soil. For the diesel-contaminated soil, eight PAHs were identified, including dibenzothiophene. It was not clear which compounds affected mortality in the bunker-C soil. Across the three series, biota-to-soil accumulation factors (BSAFs) ranged from 10–2.05 to 103.98, and generally increased as the hydrophobicity (Kow) or molecular weight of the alkyl PAHs increased. The toxicity endpoints of each oil product can be used as reference values in the risk assessment of soils contaminated with petroleum, and individual PAHs screened out have implications for future toxicity assessment of petroleum hydrocarbons.  相似文献   

9.
《Process Biochemistry》1999,34(2):167-171
Cells of the achlorophyllous micro-alga Prototheca zopfii were immobilized in 8-mm-cube polyurethane foam pieces. A 2-fold increase in the volumetric biodegradation rate of the immobilized cells for n-alkanes (mixture of C14, C15 and C16) was observed compared with that of the immobilized system using calcium alginate gel in batch experiments using flasks agitated on a reciprocal shaker at 25°C. The apparent biodegradation rates were influenced significantly by the affinities between algal cells and matrix and/or between hydrocarbons to be degraded and matrix. Such affinities resulted in the improvement of the interaction between the substrates and algal cells. The stability of the immobilized cells was examined in repeated-batch culture and activity was stable over three successive cycles of cultivation. P. zopfii immobilized in polyurethane foam was incorporated into a bubble-column type bioreactor for degrading hydrocarbons and the potential effectiveness of the immobilized cell system was confirmed.  相似文献   

10.
A novel two-phase partitioning bioreactor (TPPB) modified by polysulfone (PSF) microspheres and immobilized enzyme (novozym-435) was formed, and the resulting TPPB was applied into mandelic acid chiral separation. The PSF microspheres containing n-hexanol (named PSF/hexanol microspheres) was prepared by using the phase inversion method, which was used as the organic phase. Meanwhile, the immobilized enzyme novozym-435 was used as a biocatalyst. The water phase was composed of the phosphate buffer solution (PBS). (R, S)-Methyl mandelate was selected as the substrate to study enzymatic properties. Different reaction factors have been researched, such as pH, reaction time, temperature and the quantity of biocatalyst and PSF/hexanol microspheres added in. Finally, (S)-mandelic acid was obtained with an 80 % optical purity after 24 h in the two-phase partitioning bioreactor. The enantiomeric excess (eep) values were very low in the water phase, in which the highest eep value was only 46 %. The eep of the two-phase partitioning bioreactor had been enhanced more obviously than that catalyzed in the water phase.  相似文献   

11.
A proof‐of‐concept study to evaluate the biological removal of hydrocarbons (naphthalene, n‐hexadecane, and fuel oil #2) from contaminated wood (Southern yellow pine) was conducted using 14C‐labeled tracers and gas chromatography. Contaminated wood was brought in contact with n‐hexadecane‐degrading Pseudomonas aeruginosa PG201 or naphthalene degrading environmental isolates by the application either on mineral medium agar or filter paper containing a previously grown biomass (“overlay” technique). The experiments showed a significant acceleration of naphthalene removal by biomass. Due to biodegradation combined with evaporation, naphthalene was nearly completely removed (up to 90–98 %) in 4–8 days from freshly contaminated 6 mm‐ and 17 mm‐thick wood samples. The removal of a less volatile hydrocarbon, n‐hexadecane, was less efficient, at 40–60% in 20–40 days, with the only variable significantly affecting this pollutant's removal rate being the moisture content of the medium. Biodegradation experiments with standard heating fuel oil #2 (a representative real‐world contaminant) resulted in significant removal of light hydrocarbons (C10–C16), i.e., more mobile/volatile substrates, in 3 weeks (up to 70 %) whereas heavier hydrocarbons (C17–C19) were less affected. Pollutant mobility in both wood and aqueous media was shown to be the crucial factor affecting the removal efficiency. These results point toward a promising technique to reclaim wooden structures contaminated with volatile and semi‐volatile chemicals.  相似文献   

12.
New biocatalysts were developed using organophosphorus hydrolase (OPH, EC 3.1.8.1) with a polyhistidine tag at the N-terminus of the protein (His6-OPH). The use of His6-OPH together with previously developed approaches for the entrapment of cells into poly(vinyl alcohol) cryogels and covalent immobilization of enzymes into porous fabric materials, impregnated with chemically cross-linked chitosan sulphate gel, enabled dramatic improvement of catalytic characteristics against various organophosphorous compounds (OPCs; Paraoxon, Coumaphos, Methyl parathion, etc.). The polyhistidine tag of OPH was used to create a new immobilized biocatalyst using metal-chelating carriers, such as Ni2+-nitrilotriacetic acid-agarose and Co2+-iminodiacetic acid-polyacrylamide cryogel. The latter biocatalyst had high activity and stability for the continuous hydrolysis of OPCs.  相似文献   

13.
This study reports the immobilization and performance of a hydrocarbon-degrading Rhodococcus sp. strain (designated as QBTo) on sunflower seed husks (SH) for the bioremediation of soils polluted with crude oil. The SH performance as inoculants carrier was compared with peat, which is a vegetal material traditionally used in carrier-based inoculants production. The stability of the immobilized culture under storage conditions was assessed by viability at different times when stored at 25°C and 10°C. The catabolic activity of immobilized and free QTBo cells introduced into sandy loam soil, freshly contaminated with crude oil, was studied in microcosms. A higher number of viable QTBo cells were recovered from the inoculants formulated with SH (QTBo-SH) after prolonged storage at 10°C and 25°C. The microcosms amended with QTBo-SH inoculants showed a removal of about 66% of total petroleum hydrocarbons (TPH), whereas in those inoculated with QTBo-peat inoculants, the decrease was of about 47%. In the control microcosms (noninoculated) and liquid culture–amended soils, the TPH removal was about 28%. SH is a waste of edible oil industry, nontoxic, and biodegradable and has demonstrated to confer to the immobilized cultures greater potential to survive not only during storage but also in the soil environment, improving bioremediation process.  相似文献   

14.
Nutrient enhancement of bioremediation with nitrogen, namely biostimulation, increases process performance. Selection of a proper nitrogen source is critical for bioremediation applications. In this study, the effects of different nitrogen sources on biodegradation of C10–C25 n-alkane compounds in diesel fuel-spiked soil were revealed, and the most appropriate nitrogen source for biodegradation of semi- and non-volatile n-alkanes was investigated. Bioremediation of diesel fuel contaminated soil was monitored in lab-scale reactors for 15 days. Ammonium sulfate, potassium nitrate and urea were used as nitrogen sources. Carbon dioxide and oxygen levels in the reactors were recorded to monitor microbiological activity. Contaminant removal process was investigated by pH, heterotrophic plate count, total petroleum hydrocarbons (TPH) and C10–C25 n-alkane analyses. First-order kinetic constants were calculated via respirometric and contaminant concentration data. According to total C10–C25 n-alkane removal levels and degradation rate constants, ammonium sulfate addition resulted in the most efficient contaminant removal followed by potassium nitrate and urea. Simultaneous degradation of individual n-alkanes was observed for all of the nitrogen sources. Urea addition changed the distribution of individual n-alkane concentrations relative to the pre-experimental concentrations. Nitrogen source type had no differential effect on degradation rates of semi- (C10–C16) and non-volatile (C17–C25) fractions.  相似文献   

15.
Addition of activated sludge taken from the wastewater treatment facilities ofan oil refinery to a soil contaminated with oily sludge stimulated hydrocarbonbiodegradation in microcosms, bioreactors and biopile. Microcosms containing50 g of soil to which 0.07 % (w/w) of activated sludge was added presented ahigher degradation of alkanes (80 % vs 24 %) and polycyclic aromatic hydrocarbons(PAHs) (77 % vs 49 %) as compared to the one receiving only water, after 30days of incubation at room temperature. Addition of ammonium nitrate or sterilesludge filtrate instead of activated sludge resulted in a similar removal of PAHsbut not of alkanes suggesting that the nitrogen contained in the activated sludgeplays a major role in the degradation of PAHs while microorganisms of thesludge are active against alkanes. Addition of sludge also stimulated hydrocarbonbiodegradation in 10-kg bioreactors operated during 60 days and in a 50-m3 biopile operated during 126 days. This biopile treatment allowed the use of the soil for industrial purpose based on provincial regulation (``C' criteria). In contrast, the soil of the control biopile that received only water still exceeded C criteria for C10–C50 hydrocarbons, total PAHs, chrysene and benzo[a]anthracene.The stimulation effect of sludge was stronger on the 4-rings than on 2-rings PAHs.The soil of the biopile that received sludge was 4–5 times less toxic than the control. These results suggest that this particular type of activated sludge could be used to increase the efficiency of the treatment of hydrocarbon-contaminated soils in a biopile.  相似文献   

16.
Enantiopure sulfoxides can be prepared via the asymmetric oxidation of sulfides using sulfide monooxygenases. The n-octane–water biphasic system was chosen for the bio-oxidation of a water-insoluble phenyl methyl sulfide (PMS) by Rhodococcus sp. CCZU10-1. In this n-octane–water system, the optimum reaction conditions were obtained. (S)-phenyl methyl sulfoxide ((S)-PMSO) with >99.9 % enantiomeric excess formed at 55.3 mM in the n-octane–water biphasic system. Using fed-batch method, a total of 118 mM (S)-PMSO accumulated in 1-L reaction mixture after the 7th feed, and no (R)-PMSO and sulfone were detected. Moreover, Rhodococcus sp. CCZU10-1 displayed fairly good activity and enantioselectivity toward other sulfides. In conclusion, Rhodococcus sp. CCZU10-1 is a promising biocatalyst for synthesizing highly optically active sulfoxides.  相似文献   

17.
Bacterial Succession in a Petroleum Land Treatment Unit   总被引:10,自引:1,他引:9       下载免费PDF全文
Bacterial community dynamics were investigated in a land treatment unit (LTU) established at a site contaminated with highly weathered petroleum hydrocarbons in the C10 to C32 range. The treatment plot, 3,000 cubic yards of soil, was supplemented with nutrients and monitored weekly for total petroleum hydrocarbons (TPH), soil water content, nutrient levels, and aerobic heterotrophic bacterial counts. Weekly soil samples were analyzed with 16S rRNA gene terminal restriction fragment (TRF) analysis to monitor bacterial community structure and dynamics during bioremediation. TPH degradation was rapid during the first 3 weeks and slowed for the remainder of the 24-week project. A sharp increase in plate counts was reported during the first 3 weeks, indicating an increase in biomass associated with petroleum degradation. Principal components analysis of TRF patterns revealed a series of sample clusters describing bacterial succession during the study. The largest shifts in bacterial community structure began as the TPH degradation rate slowed and the bacterial cell counts decreased. For the purpose of analyzing bacterial dynamics, phylotypes were generated by associating TRFs from three enzyme digests with 16S rRNA gene clones. Two phylotypes associated with Flavobacterium and Pseudomonas were dominant in TRF patterns from samples during rapid TPH degradation. After the TPH degradation rate slowed, four other phylotypes gained dominance in the community while Flavobacterium and Pseudomonas phylotypes decreased in abundance. These data suggest that specific phylotypes of bacteria were associated with the different phases of petroleum degradation in the LTU.  相似文献   

18.
Aerobic, mesophilic bacteria from coal tar–contaminated soil were analyzed for pyrene utilization capacity and identified by 16S ribosomal DNA sequencing as members of three genera: Bacillus spp., Pseudomonas sp., and Rhodococcus sp. The soil contained nine different hazardous polyaromatic hydrocarbons (PAHs): benzo[g, h, i]perylene, dibenzo[a, h]anthracene, indeno[1,2,3-c,d]pyrene, pyrene, acenaphthylene, fluorene, phenanthrene, benzo[k]fluoranthene, and benzo[b]fluoranthene. Bacillus spp. (PK-6) MTCC 1005 showed 56.4% utilization of pyrene (C16H10) (50 μg ml?1) in 4 days, with growth associated biosurfactant activity and resulted in the formation of five new intermediates: phenanthrene (C14H10), 9,10-diphenylphenanthrene (C26H18), 9-methoxyphenanthrene (C15H12O), 5,6,7,8-tetrahydro-1-naphthoic acid (C11H12O2), and 1,6,7-trimethylnaphthalene (C13H14). The results suggested that Bacillus spp. could be found suitable for practical field application for effective in situ PAH bioremediation.  相似文献   

19.
The aim of this work was to evaluate the effect of keratinous waste addition on oil-hydrocarbon removal, through a mixed culture of oil-degrading bacteria, with the ability to secrete keratinases. The mixed culture was grown in the media with oil, or oil supplemented with chicken-feathers as the keratinous waste. Residual oil-hydrocarbons were determined as total petroleum hydrocarbons (TPHs) and oil fractions and then quantified by GC–FID and GC–MS.Results showed that in presence of the keratinous waste, the removal of oil-hydrocarbons was 57,400 mg l?1, meanwhile the treatment without waste presented an oil-hydrocarbons removal of 35,600 mg l?1. The aliphatic fraction was the most removed in both treatments. In addition, chromatographic profiles indicated that the aliphatic fraction showed different degradation pattern; in the presence of keratinous wastes, the C18 to C28 compounds were preferably removed over the C10 to C17. The addition of keratinous waste not only improved the oil-hydrocarbons removal but, it changed the removal pattern of the target hydrocarbons.  相似文献   

20.
The ecofriendly ternary blend polymer film was prepared from the chitosan (CH), polylactic acid (PLA) and polyvinyl alcohol (PVA). Immobilization of Candida cylindracea lipase (CCL) was carried out on ternary blend polymer via entrapment methodology. The ternary blend polymer and immobilized biocatalyst were characterized by using N2 adsorption–desorption isotherm, SEM, FTIR, DSC, and (%) water content analysis through Karl Fischer technique. Biocatalyst was then subjected for the determination of practical immobilization yield, protein loading and specific activity. Immobilized biocatalyst was further applied for the determination of biocatalytic activity for N-acylation reactions. Various reaction parameters were studied such as effect of immobilization support (ratio of PLA:PVA:CH), molar ratio (dibutylamine:vinyl acetate), solvent, biocatalyst loading, time, temperature, and orbital speed rotation. The developed protocol was then applied for the N-acylation reactions to synthesize several industrially important acetamides with excellent yields. Interestingly, immobilized lipase showed fivefold higher catalytic activity and better thermal stability than the crude extract lipase CCL. Furthermore various kinetic and thermodynamic parameters were studied and the biocatalyst was efficiently recycled for four successive reuses. It is noteworthy to mention that immobilized biocatalyst was stable for period of 300 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号