首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Alkaline phosphatase (AP) displays significant structural changes during metal-ion binding, supporting cooperative interactions between the subunits of the dimeric enzyme. Here, we present data on the dynamic properties of AP from E. coli, and characterize the structural changes that accompany variations in metal-ion content, combining limited proteolysis and MALDI-TOF mass spectrometry. Limited proteolysis revealed an internal cleavage site at Arg-293, reflecting a position of conformational flexibility supporting subunit communication essential for catalysis. A specific shielding of a region distant from the metal-binding site has been demonstrated, implying transmission of conformational changes, induced by metal-ion binding to the adjacent subunit, across the subunit interface.  相似文献   

3.
Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.  相似文献   

4.
Alkaline phosphatase from chicken intestine was purified from the crude preparation employing three-phase partitioning and by the use of phenyl Sepharose-6B in the batch mode. TPP uses a combination of ammonium sulphate and t-butanol to precipitate proteins from crude aqueous extracts. The precipitated protein forms interface between lower aqueous phase and upper organic solvent phase. The fold purification of the finally purified enzyme was 80 and the activity recovery was 61%. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was found to be around 67 kDa.  相似文献   

5.
The isolated brush border membrane of the tapeworm, Hymenolepis diminuta, hydrolyzes p-nitrophenyl phosphate over a broad pH range. Acid phosphatase activity (pH optimum at 4.0) is inhibited specifically by sodium dodecyl sulfate (SDS) and NaF, while the alkaline phosphatase activity (pH optimum at 8.8) is inhibited specifically by levamisole, 2-mercaptoethanol, and ethylenediaminetetra-acetate (EDTA). These two phosphatase activities are further differentiated in that (1) there is a rapid decrease in alkaline phosphatase activity when the membrane preparation is incubated at pH 4.0, while there is little loss of acid phosphatase activity, and (2) the alkaline phosphatase activity is solubilized with no loss of activity when the membrane is treated with Triton X-100, while such treatment causes a significant loss of acid phosphatase activity. Both activities are nonspecific and hydrolyze a variety of phosphorylated compounds, but the relative activities of the two phosphatases against these substrates vary significantly.  相似文献   

6.
7.
Oxidation of 1,N6-ethenoadenosine monophosphate (epsilon AMP) with periodate cleaved the cis-diol of the ribose ring and resulted in the formation of a dialdehyde derivative (epsilon AMP-dial). At room temperature epsilon AMP-dial was unstable and underwent beta-elimination to give 4',5'-anhydro-1,N6-ethenoadenosine dialdehyde acetal (A epsilon Ado-dial). These nucleotide analogues were found to inactivate human placental alkaline phosphatase in a time- and concentration-dependent manner. epsilon AMP-dial was shown to be an affinity label for the enzyme on the basis of the following criteria. (a) Kinetics of the enzyme activity loss over a wide range of epsilon AMP-dial concentration showed a saturating phenomenon. Removal of the phosphate group made the reagent (A epsilon Ado-dial) become a general chemical modifying reagent. (b) The artificial substrate p-nitrophenyl phosphate gave substantial protection of the enzyme against inactivation. (c) epsilon AMP-dial was a substrate and a partial mixed-type inhibitor for the enzyme. Results of the inhibition and protection studies indicated that the reagent and substrate could combine with the enzyme simultaneously. Besides the phosphate-binding domain, an induced hydrophobic region is proposed for the substrate-binding site for human placental alkaline phosphatase.  相似文献   

8.
Histochemical studies of human breast tumors were performed with particular emphasis on the activity of alkaline phosphatase (AIP), acid phosphatase (AcP) and glucose-6-phosphate dehydrogenase (G6PDH). Enzyme activities in benign and malignant lesions were compared. AIP was prominent in normal mammary epithelium, limited to the myoepithelial layer in benign tumors and was absent in cords of malignant cells. AcP activity was faintly detected in normal mammary epithelium, increased in canalicular epithelium of fibroadenomas and was marked in malignant cells. G6PDH exhibited marked activity in neoplastic epithelium and the stroma of nearly all carcinomas studied, whereas in benign tumors, G6PDH activity was strictly limited to the connective tissue. The study suggests a strong correlation between G6PDH activity and malignancy. The different results obtained by various workers in this field are critically reviewed, and discussed in the light of the results of the present study.  相似文献   

9.
产碱性磷酸酶乳杆菌的筛选鉴定、酶的纯化及特性   总被引:1,自引:1,他引:0  
【背景】碱性磷酸酶(alkaline phosphatase,ALP)是生物体内参与磷酸代谢的调控酶,不同物种的ALP性质与其生理功能有关,提纯后的ALP常用作工具酶,广泛应用于基因工程中,但目前关于乳酸菌中ALP的相关研究甚少。【目的】筛选出一株产ALP且具有潜在益生作用的乳杆菌,对该酶进行分离纯化,并对其性质进行探究,为今后益生菌的开发利用和ALP的工业化生产提供新的微生物资源。【方法】采集蒙古国4个地区的酸马奶样品,通过显色反应初筛和酶活检测复筛对产酶菌株进行筛选,经形态学观察、生理生化鉴定及16S rRNA基因序列同源性比较分析进行菌种鉴定。采用超声破碎法提取ALP,经硫酸铵沉淀、DEAE-52离子交换层析、Sephadex G-200凝胶过滤层析纯化该酶,SDS-PAGE电泳法检测其纯度。【结果】从78株乳酸菌中分离筛选出一株产ALP酶活性最高的乳杆菌(编号为Z23),16S rRNA基因序列长度为1 473 bp,鉴定结果表明为鼠李糖乳杆菌。纯化后的酶比活力为180.27 U/mg,纯化倍数为48.37,酶活回收率为17.05%,该酶亚基相对分子质量为46.7 kD。菌株所产ALP的最适温度为37℃,4℃时酶活最为稳定;最适pH为9.5,在pH 9.0-10.0之间,酶活稳定性可达90%以上;Mg2+和K+对ALP有明显激活作用,Ba2+和Cu2+在低浓度时对ALP有激活作用,高浓度时有抑制作用,Ca~(2+)、Zn~(2+)和EDTA对ALP有强烈的抑制作用。以不同浓度的p-NPP为底物,测得酶的Km值为3.42 mmol/L,Vmax值为1.24 mmol/(L·min)。【结论】本研究对蒙古国地区酸马奶中的益生菌资源有了更为明确的认知,为今后碱性磷酸酶产生菌的筛选和酶的应用开辟了新途径。  相似文献   

10.
In this study, we examined the interaction of the osteoblast which forms bone and sulfated hyaluronan (SHya). For the purpose of the creation of a new functional polysaccharide, we introduced a sulfate group in hyaluronan (Hya) of high molecular weight, and SHya of high molecular weight could be obtained for the first time. When rat calvarial osteoblast (rOB) cells were cultured with a high concentration of SHya, they formed aggregated spheroids after 4h and the spheroids grew to about 200microm after 24h. We examined the expression of cell adhesion molecules in order to clarify the mechanism of aggregate formation. The N-cadherin (N-cad) and Connexin43 (Cx43) expression level of rOB cells cultured with SHya remarkably increased after 2h. A difference in the expression of Integrin beta1 (Intbeta1) could not be observed between the SHya addition and control group. The alkaline phosphatase (ALPase) activity of rOB cells cultured with SHya after 8h was significantly enhanced in comparison with control. Therefore, the sulfate group of SHya seems to enhance expression of cell adhesion protein such as N-cad and Cx43, resulting in aggregate formation and further remarkable induction of the ALPase activity of rOB cells.  相似文献   

11.
Vanadate has been recognized as a specific and potent phosphatase inhibitor since its structure is similar to that of phosphate. In this study, we measured the inhibition of glutathione S-transferase-tagged protein tyrosine phosphatase 1B (GST-PTP1B) and alkaline phosphatase (ALP) by the insulin enhancing compounds, bis(maltolato)oxovanadium(IV) (BMOV). The results showed that the activity of GST-PTP1B was reversibly inhibited by solutions of BMOV with an IC50 value of 0.86 ± 0.02 μM. Steady state kinetic studies showed that inhibition of GST-PTP1B by BMOV was of a mixed competitive and noncompetitive type. In addition, incubation of GST-PTP1B with BMOV showed a time-dependent biphasic inactivation of the protein. On the other hand, the inhibitory behavior of BMOV on ALP activity was reversible and competitive with an IC50 value of 32.1 ± 0.6 μM. Incubation with BMOV did not show biphasic inactivation of ALP. The reversible inhibition of GST-PTP1B by BMOV is more potent than that of ALP, but solutions of BMOV inhibited both enzymes. This data support the suggestion that mechanisms for the inhibitory effects of BMOV on GST-PTP1B and ALP are very different.  相似文献   

12.
Bone morphogenetic proteins (BMPs), members of the transforming growth factor beta superfamily, have been identified by their ability to induce cartilage and bone from nonskeletal cells and have been shown to act as a ventral morphogen in Xenopus mesoderm. We isolated a murine homeobox-containing gene, distal-less 5 (mDlx5), as a BMP-inducible gene in osteoblastic MC3T3-E1 cells. Stable transfectants of MC3T3-E1 that overexpress mDlx5 mRNA showed increase in various osteogenic markers, a fourfold increase in alkaline phosphatase activity, a sixfold increase in osteocalcin production, and appearance in mineralization of extracellular matrix. Furthermore, mDlx5 was induced orthotopically in mouse embryos treated with BMP-4 and in fractured bone of adult mice. Consistent with these observations, we also found that injection of mDlx5 mRNA into dorsal blastomeres enhanced the ventralization of Xenopus embryos. These findings suggest that mDlx5 is a target gene of the BMP signaling pathway and acts as an important regulator of both osteogenesis and dorsoventral patterning of embryonic axis.  相似文献   

13.
Summary Ulmus davidiana Planch (Ulmaceae) (UD) long has been known to have anti-inflammatory and protective effects on damaged tissue, inflammation, and bone among other functions. The herbal medicine also is being used in Oriental medicine to treat osteoporosis. In a preliminary study, treatment of osteoclasts containing long bone cells with the water extract of UD bark prevented the intracellular maturation of cathepsin K (cat K), and thus, it was considered that UD is a pro-drug of a potent bone-resorption inhibitor. To further clarify the role of UD in ossification, we investigated the effects of UD on the proliferation and differentiation of osteoblastic cell lines in vitro. In this study, we assessed the effects of UD on osteoblastic differentiation in nontransformed osteoblastic cells (MC3T3-E1) and rat bone marrow cells. UD enhanced alkaline phosphatase (ALP) activity and mineralization in a dose- and time-dependent fashion. This stimulatory effect of the UD was observed at relatively low doses (significant at 5–50 μg/ml and maximal at 50 μg/ml). Northern blot analysis showed that UD (100 μg/ml) increases in bone morphogenic protein-2 as well as ALP mRNA concentrations in MC3T3-E1 cells. UD slightly increased in type I collagen mRNA abundance throughout the culture period, whereas it markedly inhibited the gene expression of collagenase-1 between days 15 and 20 of culture. These results indicate that UD has anabolic effects on bone through the promotion of osteoblastic differentiation, suggesting that is could be used for the treatment of common metabolic bone diseases such as osteoporosis.  相似文献   

14.
Surfactin, an acidic lipopeptide of Bacillus subtilis, at 70 μM non-competitively inhibited alkaline phosphatase without its glycosyl-phosphatidylinositol anchor by 50%. Enzyme activity was restored by adding 50 μM ZnCl 2 and 1 mM MgCl2 confirming the chelating action of the free carboxyl groups of the Asp and Glu residues in the peptide moiety of surfactin. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Dolichyl [beta-32P]pyrophosphate ([beta-32P]Dol-P-P) has been prepared chemically to study Dol-P-P phosphatase in calf brain. Calf brain microsomes catalyze the enzymatic release of 32Pi from exogenous [beta-32P]Dol-P-P by a bacitracin-sensitive reaction. [32P]Pyrophosphate was not detected with the water-soluble product even when 1 mM sodium pyrophosphate was added to impede pyrophosphatase activity. A substantial fraction of the Dol-P-P phosphatase activity can be solubilized by treating brain microsomes with 3% Triton X-100. The detergent extracts catalyze the enzymatic release of 32Pi from [beta-32P]Dol-P-P and the conversion of [14C]undecaprenyl pyrophosphate to [14C]undecaprenyl monophosphate. The solubilized Dol-P-P phosphatase activity: 1) is optimal at neutral pH; 2) is inhibited by Mn2+ and stimulated by EDTA; 3) exhibits an apparent Km = 20 microM for Dol-P-P; 4) is competitively inhibited by undecaprenyl pyrophosphate, and 5) is blocked by bacitracin. Solubilized Dol-P-P phosphatase activity differs from Dol-P phosphatase activity present in the same detergent extracts with respect to: 1) thermolability at 50 degrees C, 2) effect of 20 mM EDTA, and 3) sensitivity to phosphate and fluoride ions. These studies describe the chemical synthesis of [beta-32P]Dol-P-P for use in a convenient assay of Dol-P-P phosphatase activity. A procedure for the solubilization of Dol-P-P phosphatase activity from microsomes is presented, and an enzymological comparison indicates that Dol-P-P and Dol-P phosphatase are separate enzymes in calf brain.  相似文献   

16.
Hu YM  Liu C  Cheng KW  Sung HH  Williams LD  Yang ZL  Ye WC 《Phytochemistry》2008,69(12):2367-2373
Chemical investigation of rhizomes of Homalomena occulta (Lours) resulted in isolation and identification of two sesquiterpenoids (6,7), and one daucane ester 8, together with five known sesquiterpenoids, oplodiol, oplopanone, homalomenol C, bullatantriol, and 1beta,4beta,7alpha-trihydroxyeudesmane. Their structures were elucidated using 1D and 2D NMR spectroscopic and X-ray analyses. The chloroform extract of this plant and compounds 1-7 were tested in vitro for their activities in stimulating osteoblast (OB) proliferation, differentiation and mineralization. Compounds 1-4 had a stimulative effect on significantly proliferation and differentiation of culture osteoblasts, while the chloroform extract and 1 significantly stimulated mineralization of cultured osteoblasts in vitro.  相似文献   

17.
The effects of forskolin on differentiation of osteoblastic cells (clone MC3T3-E1) cultured in alpha-minimum essential medium containing 0.1% bovine serum albumin were investigated by assays of intracellular cyclic AMP level and alkaline phosphatase activity in the cells. Forskolin increased cyclic AMP production in the cells in a dose-related manner, the maximum increase being 250-fold above that of the controls. Alkaline phosphatase activity in the cells was also elevated as early as 24 h and rose to nearly its maximum at 48 h. The elevation was dose-dependent, with a maximum increase at 5 X 10(-6) M forskolin. Forskolin and prostaglandin E2 showed a supraadditive effect on cyclic AMP production in the cells and had an additive effect on alkaline phosphatase activity, whereas forskolin and dibutyryl cyclic AMP had little additive effect on either cyclic AMP production or enzyme activity. These results suggest that cyclic AMP is closely linked to the differentiation of osteoblastic cells in vivo.  相似文献   

18.
For the purified alkaline phosphatase from bone, the ability to catalyze a phosphate transfer reaction from p-nitrophenyl phosphate to two different hydroxy acceptor compounds, ethanolamine and glycerol, was established by identification of the formed phosphorylated products, phosphoethanolamine and glycerol 3-phosphate, respectively. In addition, a steady-state kinetic analysis of the hydrolysis of p-nitrophenyl phosphate in the presence of an added nucleophile, diethanolamine, gave rise to the proposal of a simple model for the kinetic mechanism of the enzyme. This mechanism includes a covalent phosphoryl enzyme intermediate, the dephosphorylation of which by water (k3) or a nucleophile (k4) is rate-determining. According to this model, in the presence of diethanolamine, k3 and k4 were determined to be 4.44 s-1 M-1 and 1000 s-1 M-1, respectively. Therefore, in vitro a suitable nucleophile, such as diethanolamine, seems to be a better phosphate acceptor than water. These results may suggest that alkaline phosphatase from bone could be well suited for catalyzing phosphate transfer reactions in vivo as well.  相似文献   

19.
Lymphocytes from murine spleens released granulocyte colony stimulating activity (CSA), macrophage migration inhibition factor and lymphotoxin from 24–96 hr after stimulation with phytohemagglutinin (PHA). Cytochalasin B at 5 μg/ml completely inhibited the release of migration inhibition factor and lymphotoxin but significantly increased the release of CSA.  相似文献   

20.
A kinetic study of the inhibition of several alkaline phosphatase (AP isoenzyme activities by phenobarbital was carried out using p-nitrophenylphosphate (10 mM) as a substrate at pH 9.8 in a 300-mM Hepes buffer. AP from bovine kidney, calf intestine, bovine liver, and rat bone was used. Over a phenobarbital concentration range of 20-400 mM, all these isoenzymes were inhibited in an uncompetitive manner with a Ki of 200 mM for intestinal AP, and in a linear mixed-type manner for all the other isoenzymes tested. The Ki values were 10, 40 and 55 mM for kidney, bone and liver AP, respectively. The use of 15 mM carbonate-bicarbonate or 400 mM diethanolamine buffer did not modify the degree of inhibition of intestinal AP activity. Dixon plots of the reciprocal of reaction velocity versus inhibitor concentration either at different substrate concentration or at different DEA concentration indicate uncompetitive inhibition for the intestinal enzyme. This in vitro inhibitory effect of phenobarbital is in contrast to its in vivo stimulating action on AP. However, in the whole animal, the effects of phenobarbital administration probably represent the sum of multiple effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号