首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sulphate esters make up a large proportion of the available sulphur in agricultural soils, and many pseudomonads can desulphurize a range of aryl- and alkylsulphate esters to provide sulphur for growth. After miniTn5 transposon mutagenesis of Pseudomonas putida S-313, we isolated 19 mutants that were defective in cleavage of the chromogenic sulphate ester 5-bromo-4-chloro-3-indoxylsulphate (X-sulphate). Analysis of these strains revealed that they carried independent insertions in a gene cluster that comprised genes for a sulphate ester/sulphonate transporter (atsRBC) a LysR-type regulator (sftR), an oxygenolytic alkylsulphatase (atsK), an arylsulphotransferase (astA) and a putative TonB-dependent receptor (sftP). The SftP protein was localized in the outer membrane, and the arylsulfphotransferase was identified as an intracellular enzyme. Expression of sftR was repressed in the presence of inorganic sulphate, and the sftR gene was required for the expression of atsBC, atsRK and sftP-astA. An sftR mutant was unable to grow with aryl- or alkylsulphate esters in laboratory media and showed significantly reduced survival compared with the parent strain during incubation in Danish agricultural and grassland soils. This effect suggests that sulphate esters are an important sulphur source for microbes in aerobic soils and highlights the importance of the microbial population in the soil sulphur cycle.  相似文献   

3.
Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for several reasons: its molecular weight is similar to the molecular weights of Escherichia coli methyl-accepting chemotaxis proteins, the amount of time required to attain maximal methylation correlated with the time needed for behavioral adaptation of P. putida cells to benzoate, and methylation was stimulated by benzoate only in cells induced for chemotaxis to benzoate. Also, a mutant specifically defective in benzoate taxis failed to show any stimulation of methylation upon addition of benzoate. Benzoylformate did not stimulate protein methylation in cells induced for benzoylformate chemotaxis, suggesting that sensory input from this second group of aromatic-acid attractants is processed through a different kind of chemosensory pathway. The chemotactic responses of P. putida cells to benzoate and benzoylformate were not sensitive to external pH over a range (6.2 to 7.7) which would vary the protonated forms of these weak acids by a factor of about 30. This indicates that detection of cytoplasmic pH is not the basis for aromatic-acid taxis in P. putida.  相似文献   

4.
dl-[1,6-14C]Lipoate was used to support the growth of Pseudomonas putida LP, which was found to grow on d- or l-lipoate as sole source of carbon and sulfur. The major radioactive catabolite in the benzene extract from acidified aerobic cultures was identified to be bisnorlipoate. The principal acidic 14C-catabolites in the aqueous phase have now been isolated and identified as β-hydroxybisnorlipoate, as well as bisnorlipoate; the existence of lesser amounts of tetranorlipoate is also indicated by Chromatographic evidence. Although the microorganism can grow on 8-methyllipoate (6,8-dithiononanoate), the bisnor- and tetranor-compounds, as well as 6,9-dithiononanoate (a dithiane derivative), do not support growth. Hence, the bacterium can derive most of the needed carbon by β-oxidation of the acid side chain of a 3-substituted dithiolane to yield the two-carbon-shorter bisnor-compound. Less extensive degradation of bisnorlipoate results in the formation of β-hydroxybisnorlipoate, which may be further metabolized to tetranorlipoate.  相似文献   

5.
6.
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h−1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate−1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.  相似文献   

7.
alpha-Pinene metabolism by Pseudomonas putida.   总被引:1,自引:0,他引:1       下载免费PDF全文
By using metabolically altered mutants and acrylate, novel putative intermediates of alpha-pinene metabolism by Pseudomonas putida PIN11 were detected. They were characterized as 3-isopropylbut-3-enoic acid and (zeta)-2-methyl-5-isopropylhexa-2,5-dienoic acid.  相似文献   

8.
The unusual tolerance of Pseudomonas putida DOT-T1E to toluene is based on the extrusion of this solvent by constitutive and inducible efflux pumps and rigidification of its membranes via phospholipid alterations. Pseudomonas putida DOT-T1E-109 is a solvent-sensitive mutant. Mutant cells were less efficient in solvent extrusion than the wild-type cells, as shown by the limited efflux of 14C-1,2,4-trichlorobenzene from the cell membranes, despite the fact that the efflux pumps are overexpressed as a result of increased expression of the ttgDEF and ttgGHI efflux pump operons. This limitation could be the result of alterations in the outer membrane because the mutant cells released more beta-lactamase to the external medium than the wild-type cells. The mutant P. putida DOT-T1E-109 showed negligible synthesis of fatty acids in the presence of sublethal concentrations of toluene as revealed by analysis of 13CH3-13COOH incorporation into fatty acids. In contrast, the mutant strain in the absence of solvents, and the wild-type strain, both in the presence and in the absence of toluene, incorporated 13CH3-13COOH at a high rate into de novo synthesized lipids. The mutation in P. putida DOT-T1E-109 increases sensitivity to the solvent because of a limited efflux of the solvent from the cell membranes with the concomitant inhibition of fatty acid biosynthesis.  相似文献   

9.
Nicotine, the main alkaloid produced by Nicotiana tabacum and other Solanaceae, is very toxic and may be a leading toxicant causing preventable disease and death, with the rise in global tobacco consumption. Several different microbial pathways of nicotine metabolism have been reported: Arthrobacter uses the pyridine pathway, and Pseudomonas, like mammals, uses the pyrrolidine pathway. We identified and characterized a novel 6-hydroxy-3-succinoyl-pyridine (HSP) hydroxylase (HspB) using enzyme purification, peptide sequencing, and sequencing of the Pseudomonas putida S16 genome. The HSP hydroxylase has no known orthologs and converts HSP to 2,5-dihydroxy-pyridine and succinic semialdehyde, using NADH. (18)O(2) labeling experiments provided direct evidence for the incorporation of oxygen from O(2) into 2,5-dihydroxy-pyridine. The hspB gene deletion showed that this enzyme is essential for nicotine degradation, and site-directed mutagenesis identified an FAD-binding domain. This study demonstrates the importance of the newly discovered enzyme HspB, which is crucial for nicotine degradation by the Pseudomonas strain.  相似文献   

10.
11.
Fatty acid compositions in growing and resting cells of several strains of Pseudomonas putida (P8, NCTC 10936, and KT 2440) were studied, with a focus on alterations of the saturation degree, cis-trans isomerization, and cyclopropane formation. The fatty acid compositions of the strains were very similar under comparable growth conditions, but surprisingly, and contrary to earlier reports, trans fatty acids were not found in either exponentially growing cells or stationary-phase cells. During the transition from growth to the starvation state, cyclopropane fatty acids were preferentially formed, an increase in the saturation degree of fatty acids was observed, and larger amounts of hydroxy fatty acids were detected. A lowered saturation degree and concomitant higher membrane fluidity seemed to be optimal for substrate uptake and growth. The incubation of cells under nongrowth conditions rapidly led to the formation of trans fatty acids. We show that harvesting and sample preparation for analysis could provoke the enzyme-catalyzed formation of trans fatty acids. Freeze-thawing of resting cells and increased temperatures accelerated the formation of trans fatty acids. We demonstrate that cis-trans isomerization only occurred in cells that were subjected to an abrupt disturbance without having the possibility of adapting to the changed conditions by the de novo synthesis of fatty acids. The cis-trans isomerization reaction was in competition with the cis-to-cyclopropane fatty acid conversion. The potential for the formation of trans fatty acids depended on the cyclopropane content that was already present.  相似文献   

12.
The active efflux system contributing to the solvent tolerance of Pseudomonas putida S12 was characterized physiologically. The mutant P. putida JK1, which lacks the active efflux system, was compared with the wild-type organism. None of 20 known substrates of common multi-drug-resistant pumps had a stronger growth-inhibiting effect on the mutant than on the wild type. The amount of [14C]toluene accumulating in P. putida S12 increased in the presence of the solvent xylene and in the presence of uncouplers. The effect of uncouplers confirms the proton dependency of the efflux system in P. putida S12. Other compounds, potential substrates for the solvent pump, did not affect the accumulation of [14C]toluene. These results show that the efflux system in P. putida S12 is specific for organic solvents and does not export antibiotics or other known substrates of multi-drug-resistant pumps. Received: 15 February 2000 / Received revision: 16 June 2000 / Accepted: 18 June 2000  相似文献   

13.
A bicistronic reporter consisting of the promoterless genes aacC1 (conferring gentamycin resistance) and lacZ fused to the catabolic promoter of the phenol degradation genes was used to identify and analyse mutants of Pseudomonas putida with altered carbon catabolite repression (CR) of phenol degradation. Out of approximately 2500 mini-Tn5 mutants analysed so far, 12 mutants that were resistant to gentamycin during growth on succinate were identified. In eight of these mutants mini-Tn5 was inserted into one of the genes of the cyo operon. The cyo operon encodes the cytochrome o ubiquinol oxidase, the terminal oxidase of the cyanide-sensitive branch of the respiratory chain. In these mutants the activity of the PphlA promoter was significantly increased during growth on succinate and reached 15-20% of that found during growth with the non-repressing carbon source pyruvate. During growth on glucose the reduction of CR was less obvious, during growth on lactate CR was unchanged. The possible significance of the cyo operon for the generation of signal(s) for carbon catabolite repression is discussed.  相似文献   

14.
The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.  相似文献   

15.
16.
17.
A cadmium-resistant bacterium Pseudomonas putida CD2 was isolated from sewage sludge samples. Strain CD2 exhibited high maximal tolerant concentrations (MTC) for a large spectrum of divalent metals. Screening a library obtained using Tn5-B21 insertion mutagenesis resulted in identification of 12 mutants with a substantial decrease in resistance to 3 mM cadmium. The DNA sequences of the contiguous region from the Tn5 insertion sites were determined by inverse PCR. Six genes involved in cadmium resistance were identified. These genes were from three gene clusters: czcCBA1, cadA2R and colRS. The homologs of the first two gene clusters were predicted to be metal efflux systems, whereas the products of colRS, ColR and ColS, were thought to be a two-component signal transduction (TCST) system. In this study, we have demonstrated that ColRS also function in regulating multi-metal resistance using genetic complementation.  相似文献   

18.
Cloning of genes for naphthalene metabolism in Pseudomonas putida.   总被引:4,自引:9,他引:4  
Plasmid pIG7 DNA cloned in Pseudomonas putida with the broad-host-range vectors pRK290 and pKT240 expresses the genes encoding nephthalene oxidation in the presence of the intermediate substrate, salicylate, or the gratuitous inducer, anthranilate. Two operons, nahAF and nahGK, cloned from the EcoRI fragment A (25 kilobases) are under wild-type regulation by the nahR locus. Deletion plasmids provide a restriction map of both operons. Double transformants containing structural and regulatory cistron nahR in trans are used to demonstrate positive control of expression.  相似文献   

19.
1) A bacterium capable of growing aerobically with caffeine (1,3,7-trimethylxanthine) as sole source of carbon and nitrogen was isolated from soil. The morphological and physiological characteristics of the bacterium were examined. The organism was identified as a strain of Pseudomonas putida and is referred to as Pseudomonas putida C1. 15 additional caffeine-degrading bacteria were isolated, and all of them were also identified as Pseudomonas putida strains. The properties of the isolates are discussed in comparison with 6 Pseudomonas putida strains of the American Type Culture Collection. 2) The degradation of caffeine by Pseudomonas putida C1 was investigated; the following 14 metabolites were identified: 3,7-dimethylxanthine (theobromine), 1,7-dimethylxanthine, 7-methylxanthine, xanthine, 3,7-dimethyluric acid, 1,7-dimethyluric acid, 7-methyluric acid, uric acid, allantoin, allantoic acid, ureidoglycolic acid, glyoxylic acid, urea, and formaldehyde. Formaldehyde has been demonstrated to be the product of oxidative N-demethylation mediated by an inducible demethylase. A pathway of caffeine degradation is proposed.  相似文献   

20.
《Trends in microbiology》2020,28(6):512-513
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号