首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of novel l-serinamides, substituted (S)-2-(benzylideneamino)-3-hydroxy-N-tetradecylpropanamides (3ao) and substituted (S)-2-(benzylamino)-3-hydroxy-N-tetradecyl propanamides (4c, 4i, 4l, and 4o), were synthesized as potential anti-tumor lead compounds. In vitro cell viability assay results indicate treatment with 3ao compounds resulted in significant inhibition of cell viability in the chemoresistant breast cancer cell line, MCF-7TN-R. Compounds 3i and 3l, both ortho-substituted analogs, show the greatest efficacy with IC50 values of 10.3 μM and 12.5 μM, respectively. The SAR analysis indicate that the imine functional group of 3ao is critical for the cellular anti-viability effect, and the partial atomic charge (PAC) value of imine C atom is a valuable structural parameter for predicting the activity of these ceramide analogs.  相似文献   

2.
New series of indazole based diarylureas were synthesized and their anticancer activity against cancer cells H460, A549, OS-RC-2, HT-29, Lovo, HepG2, Bel-7402, SGC-7901 and MDA-MB-231 were examined. These derivatives of diarylureas, except azaindazole based diarylureas 5f, 5l and 5m, showed superior or similar activity against most of these selected cancer cell lines to the reference compound sorafenib. The effect of substituents on the indazole ring was also investigated. Derivatives with trifluoromenthy or halogen substituent on the indazole ring showed higher activity against the selected cancer cell lines than sorafenib. The acute toxicity assay showed that compounds 5a, 5b and 5i possessed lower toxicity than sorafenib. Compound 5i with 4-(trifluoromenthy)-1H-indazole and 4-(trifluoromenthy) benzene moieties exhibited the most potent anticancer activity.  相似文献   

3.
In this study, five series of (E)-6-(4-substituted phenyl)-4-oxohex-5-enoic acids IIb–f (E), (E)-3-(4-(substituted)-phenyl)acrylic acids IIIa–g (E), 4-(4-(substituted)phenylamino)-4-oxobutanoic acids VIa,b,e, 5-(4-(substituted)phenylamino)-5-oxopentanoic acids VIIa,f and 2-[(4-(substituted)phenyl) carbamoyl]benzoic acids VIIIa,e were designed and synthesized. Selected compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumor cell lines. Compound IIf (E) displayed significant inhibitory activity against NCI Non-Small Cell Lung A549/ATCC Cancer cell line (68% inhibition) and NCI-H460 Cancer cell line (66% inhibition). Moreover, the final compounds were evaluated in vitro for their cytotoxic activity on HepG2 Cancer cell line in which histone deacetylase (HDAC) is overexpressed. Compounds IIc (E), IIf (E), IIIb (E), and IIIg (E) exhibited the highest cytotoxic activity against HepG2 human cancer cell lines with IC50 ranging from 2.27 to 10.71 μM. In addition, selected compounds were tested on histone deacetylase isoforms (HDAC1–11). Molecular docking simulation was also carried out for HDLP enzyme to investigate their HDAC binding affinity. In addition, generation of 3D-pharmacophore model and quantitative structure activity relationship (QSAR) models were combined to explore the structural requirements controlling the observed cytotoxic properties.  相似文献   

4.
Various substituted indazole and benzoxazolone amino acids were investigated as d-tyrosine surrogates in highly potent CGRP receptor antagonists. Compound 3, derived from the 7-methylindazole core, afforded a 30-fold increase in CGRP binding potency compared with its unsubstituted indazole analog 1. When dosed at 0.03 mg/kg SC, compound 2 (a racemic mixture of 3 and its (S)-enantiomer) demonstrated robust inhibition of CGRP-induced increases in mamoset facial blood flow up to 105 min. The compound possesses a favorable predictive in vitro toxicology profile, and good aqueous solubility. When dosed as a nasal spray in rabbits, 3 was rapidly absorbed and showed good intranasal bioavailability (42%).  相似文献   

5.
A one-pot, three-component, microwave assisted and conventional synthesis of new 3-(4-chloro-2-hydroxyphenyl)-2-(substituted) thiazolidin-4-one (4an) was carried out by using N,N-dimethylformamide as a solvent with high product yield. Among these synthesized compounds (4f, 4g, 4l and 4m) were found to be a broad spectrum molecule active against all bacterial and fungus strains tested, except fungus Aspergillus niger. Amongst the compounds (4g, 4l and 4m) were found to be more potent than respective standard drugs used in the experiment against Candida albicans, Staphylococcus aureus and Aspergillus flavus, respectively. All synthesized compounds were also tested for their cytotoxic activity against HeLa and MCF-7 cell lines by the sulforhodamine B (SRB) assay. This study shows that all compounds were non-cytotoxic in nature, and confirmed their antimicrobial specificity apart from any general cytotoxicity.  相似文献   

6.
A series of 4-anilinoquinazolines with C–C multiple bond substitutions at the 6-position were synthesized and investigated for their potential to inhibit epidermal growth factor receptor (EGFR) tyrosine kinase activity. Among the compounds synthesized, alkyne 6d and allenes 7d and 7f significantly inhibited EGFR tyrosine kinase activity. These compounds inhibited EGF-mediated phosphorylation of EGFR in A431 cells, resulting in cell-cycle arrest and apoptosis induction. The C–C multiple bonds substituted at the C-6 position of the anilinoquinazoline framework were essential for the significant inhibitory activity. Compounds with long carbon chains (n = 3–6), such as 6c–f, 7c–f, 11, and 12, displayed prolonged inhibitory activity.  相似文献   

7.
A general method for the synthesis of substituted (1E,4E,6E)-1,7-diphenylhepta-1,4,6-trien-3-ones, based on the aldol condensations of substituted 4-phenylbut-3-en-2-ones and substituted 3-phenylacrylaldehydes, was achieved. The natural trienones 4 and 5 have been synthesized by this method, together with the trienone analogues 920. These analogues were evaluated for their cytotoxic activity against human oral cancer KB cell line. The structure–activity relationship study has indicated that the analogues with the 1,4,6-trien-3-one function are more potent than the curcuminoid-type function. Analogues with meta-oxygen function on the aromatic rings are more potent than those in the ortho- and para-positions. Free phenolic hydroxy group is more potent than the corresponding methyl ether analogues. Among the potent trienones, compounds 11, 18 and 20 were more active than the anticancer drug ellipticine. All compounds were also evaluated against the non-cancerous Vero cells and it was found that compounds 11, 12 and 17 were much less toxic than curcumin (1); they showed high selectivity indices of 35.46, 33.46 and 31.68, respectively. These analogues are regarded as the potent trienones for anti-oral cancer study.  相似文献   

8.
In search for novel small molecules with antitumor cytotoxicity via activating procaspase-3, we have designed and synthesized three series of novel (E)-N′-benzylidene-4-oxoquinazolin-3(4H)-yl)acetohydrazides (5a-j, 6a-h, and 7a-h). On the phenyl ring ò the benzylidene part, three different substituents, including 2-OH-4-OCH3, 4-OCH3, and 4-N(CH3)2, were introduced, respectively. Biological evaluation showed that the acetohydrazides in series 5a-j, in which the phenyl ring of the benzylidene part was substituted by 2-OH-4-OCH3 substituent, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung). Most of the compounds, in this series, especially compounds 5c, 5b and 5h, also significantly activated caspase-3 activity. Among these, compound 5c displayed 1.61-fold more potent than PAC-1 as caspase-3 activator. Cell cycle analysis showed that compounds 5b, 5c, and 5h significantly arrested the cell cycle in G1 phase. Further apoptotic studies also demonstrated compounds 5b, 5c, and 5h as strong apoptotic cell death inducers. The docking simulation studies showed that these compounds could activate procaspase via chelating Zn2+ ion bound to the allosteric site of the zymogen.  相似文献   

9.
A novel series of 5-[2-(2,6-dichlorophenylamino)benzyl]-3-(substituted)-1,3,4-oxadiazol-2(3H)-thione (4ak) derivatives have been synthesized by the Mannich reaction of 5-[2-(2,6-dichlorophenylamino)benzyl]-1,3,4-oxadiazol-2(3H)-thione (3) with an appropriately substituted primary/secondary amines, in the presence of formaldehyde and absolute ethanol. Structures of these novel compounds were characterized on the basis of physicochemical, spectral and elemental analysis. The title compounds (4ak) were screened for in vivo acute anti-inflammatory and analgesic activities at a dose of 10 mg/kg b.w. Compound 4k exhibited the most promising and significant anti-inflammatory profile while compounds 4a, 4d, 4e, 4i, and 4j showed moderate to good inhibitory activity at 2nd and 4th h, respectively. These compounds were also found to have considerable analgesic activity (acetic acid induced writhing model) and antipyretic activity (yeast induced pyrexia model). In addition, the tested compounds were also found to possess less degree of ulcerogenic potential as compared to the standard NSAIDs. Compounds that displayed promising anti-inflammatory profile were further evaluated for their inhibitory activity against cyclooxygenase enzyme (COX-1/COX-2), by colorimetric COX (ovine) inhibitor screening assay method. The results revealed that the compounds 4a, 4e, 4g and 4k exhibited effective inhibition against COX-2. In an attempt to understand the ligand–protein interactions in terms of the binding affinity, docking studies were performed using Molegro Virtual Docker (MVD-2013, 6.0) for those compounds, which showed good anti-inflammatory activity. It was observed that the binding affinities calculated were in agreement with the IC50 values.  相似文献   

10.
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that acts on the first and rate-limiting step of the tryptophan/kynurenine pathway. Since the pathway is one of the means of cancer immune evasion, IDO1 inhibitors have drawn interest as potential therapeutics for cancers. We found a 4,6-disubstituted indazole 1 as a hit compound that showed both IDO1 inhibitory activity and binding affinity for IDO1 heme. Structural modification of 1 yielded compound 6, whose relatively large substituent at the 4-position and proper size substituent at the 6-position were found to be important for the enhancement of IDO1 inhibitory activity and heme affinity. A series of compounds synthesized in this work were evaluated by in silico docking simulations and by in vitro experiments using a C129Y mutant of the pocket-A of IDO1. Our results revealed that proper substituents at the 6- and 4-positions of the compounds interact with pockets A and B, respectively, and that, in particular, a good fit in pocket-A is important for the compounds’ biological activities. Absorption spectral analysis of these compounds showed that they strongly bound to the ferrous heme rather than its ferric heme. Furthermore, we observed that the heme affinities of these compounds strongly correlate with their IDO1 inhibitory activities.  相似文献   

11.
A series of novel alkyl amide functionalized trifluoromethyl substituted pyrazolo[3,4-b]pyridine derivatives 5, 6 and 7 were prepared starting from 6-phenyl-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-3-amine 3 via selective N-alkylation, followed by reaction with different primary aliphatic amines, cyclic secondary amines or l-amino acids under different set of conditions. All the synthesized compounds 5, 6 and 7 were screened for anticancer activity against four cancer cell lines such as A549—Lung cancer (CCL-185), MCF7—Breast cancer (HTB-22), DU145—Prostate cancer (HTB-81) and HeLa—Cervical cancer (CCL-2). The compounds 5i and 6e are found to have promising bioactivity at micro molar concentration.  相似文献   

12.
A series of novel 1,2,3-triazole tagged pyrazolo[3,4-b]pyridine derivatives 3 and 4 were prepared respectively starting from 6-phenyl-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-3-amine 1 via selective N-propargylation, followed by reaction with diverse substituted alkyl/perfluoroalkyl/aryl/aryl amide azides under Sharpless conditions. All the synthesized compounds 3 and 4 were screened for cytotoxic activity against four human cancer cell lines such as U937, THP-1, HL60 and B16-F10. Compounds 3e, 4g, 4i and 4j which showed promising activity have been identified.  相似文献   

13.
The synthesis and Pim kinase inhibition potency of a new series of pyrrolo[2,3-g]indazole derivatives is described. The results obtained in this preliminary structure–activity relationship study pointed out that sub-micromolar Pim-1 and Pim-3 inhibitory potencies could be obtained in this series, more particularly for compounds 10 and 20, showing that pyrrolo[2,3-g]indazole scaffold could be used for the development of new potent Pim kinase inhibitors. Molecular modeling experiments were also performed to study the binding mode of these compounds in Pim-3 ATP-binding pocket.  相似文献   

14.
A series of substituted 3-(benzylthio)-5-(1H-indol-3-yl)-4H-1,2,4-triazol-4-amines has been synthesised and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents. Synthesis of the target compounds was readily accomplished in good yields through a cyclisation reaction between indole-3-carboxylic acid hydrazide and carbon disulfide under basic conditions, followed by S-benzylation. Active compounds, such as the nitrobenzyl analogue 6c, were found to exhibit sub-micromolar IC50 values in Bcl-2 expressing human cancer cell lines. Molecular modelling and ELISA studies further implicated anti-apoptotic Bcl-2 as a candidate molecular target underpinning anticancer activity.  相似文献   

15.
Tyrosinase inhibitors have become increasingly important as whitening agents and for the treatment of pigmentary disorders. In this study, the synthesis of kojic acid derivatives having 2-substituted-3-hydroxy-6-hyroxymethyl/chloromethyl/methyl/morpholinomethylpiperidinyl- methyl/pyrrolidinylmethyl-4H-pyran-4-one structure (compounds 130) with inhibitory effects on tyrosinase enzyme were described. One-pot Mannich reaction was carried out by using kojic acid/chlorokojic acid/allomaltol and substituted benzylpiperazine derivatives in presence of formaline. Subsequently, cyclic amine (morpholine, piperidine and pyrrolidine) derivatives of the 6th-position of chlorokojic acid were obtained with nucleophilic substitutions in basic medium. The structures of new compounds were identified by FT-IR, 1H- and 13C NMR, ESI-MS and elemental analysis data. The potential mushroom tyrosinase inhibitory activity of the compounds were evaluated by the spectrophotometric method using l-DOPA as a substrate and kojic acid as the control agent. The potential inhibitory activity was also investigated in silico using molecular docking simulation method. Tyrosinase inhibitory action was significantly more efficacious for several compounds (IC50: 86.2–362.1 µM) than kojic acid (IC50: 418.2). Compound 3 bearing 3,4-dichlorobenzyl piperazine moiety was proven to have the highest inhibitory activity. The results of docking studies showed that according to the predicted conformation of compound 3 in the enzyme binding site, hydroxymethyl group provides a metal complex with copper ions and enzyme. Thus, this interaction explain the high inhibitory activities of the compounds 1, 3 and 4 possessing hydroxymethyl substituent supporting the mushroom assay results with docking studies. In accordance with the results, it is suggested that Mannich bases of kojic acid bearing substituted benzyl piperazine groups (compounds 1, 3, 4, 11, 13, 14, 23, 24, 28, and 29) could be promising antityrosinase agents. Additionally, considering the relationship between tyrosinase inhibitory activity results and molecular docking, a new tyrosinase inhibition mechanism can be proposed.  相似文献   

16.
Curcuma xanthorrhiza is a well-known traditional medicine with anti-inflammatory and anticancer activities, as well as protective effects against neurodegenerative disorders. A previous study revealed the acetylcholinesterase (AChE) inhibitory activity of some sesquiterpenoids from C. xanthorrhiza. In this study, further bioassay-guided isolation led to the identification of nine compounds for the first time from C. xanthorrhiza, including a new Guaiane-type sesquiterpene, zedoaraldehyde (1). Their structures were elucidated using NMR and MS techniques. The AChE inhibitory activities of compounds 1, 3, 4 and 7 were detected as minimum inhibitory quantities of 3, 4, 6 and 1 μg, respectively, using a TLC bioautography assay. Meanwhile, compounds 1, 3, 4 and 8 could promote SIRT1 expression by 1.37-, 1.71-, 1.73- and 1.27-fold, respectively, in HEK293 cell lines exposed to compounds at a concentration of 20 μM for 24 h. SIRT1 is becoming an important drug target for new therapies in the treatment of neurodegenerative diseases. This study indicates the potential of sesquiterpenoids from C. xanthorrhiza for use against Alzheimer's disease.  相似文献   

17.
Based on previous SAR studies on N-benzylindole and barbituric acid hybrid molecules, we have synthesized a series of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs (3ai) and evaluated them for their in vitro growth inhibition and cytotoxicity against a panel of 60 human tumor cell lines. Compounds 3c, 3d, 3f and 3g were identified as highly potent anti-proliferative compounds against ovarian, renal and breast cancer cell lines with GI50 values in low the nanomolar range. The 4-methoxy-N-benzyl analog (3d) was the most active compound with GI50 values of 20 nM and 40 nM against OVCAR-5 ovarian cancer cells and MDA-MB-468 breast cancer cells, respectively. Two other analogs, 3c (the 4-methyl-N-benzyl analog) and 3g (the 4-fluoro-N-benzyl analog) exhibited equimolar potency against MDA-MB-468 cells GI50 = 30 nM). Analog 3f (the 4-chloro-N-benzyl analog) exhibited a GI50 value of 40 nM against renal cancer cell line A498. These results suggest that aromatic substituted N-benzylindole dimethylbarbituric acid hybrids may have potential for development as clinical candidates to treat a variety of solid tumors.  相似文献   

18.
A series of novel compounds 6-amino-1-((1,3-diphenyl-1H-pyrazole-4-yl)methyleneamino)-4-(aryl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles (4at) were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral data. These compounds were screened for their in vitro antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes (Gram positive), Escherichia coli, Pseudomonas aeruginosa (Gram negative) by serial broth dilution and cytotoxic activity (NIH 3T3 & HeLa) by MTT assay. The results indicated that compounds 4g, 4i, 4m, 4o, 4r and 4t exhibit potent antibacterial activity against bacterial strains at non-cytotoxic concentrations.  相似文献   

19.
A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.  相似文献   

20.
Novel C6-amino substituted purine nucleoside analogues (212) bearing a modified pyranose-like D ring of the 4-azasteroid moiety were efficiently synthesized through nucleophilic substitution at C6 position of the steroidal nucleoside precursors (1a, b) with versatile amines. All the synthesized new compounds were evaluated for their anticancer activity in vitro against Hela, PC-3 and MCF-7 cell lines. Among them, compounds 4b, 7b and 9b exhibited significant cytotoxicity with the IC50 values of 2.99 μM (PC-3), 2.84 μM, (PC-3) and 2.69 μM (Hela), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号