首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical and theoretical study is presented on the realization of tunable plasmon-induced transparency (PIT) phenomenon in the three-dimensional patterned graphene nanostrips. The simulation results reveal that the PIT effect is generated due to the excitation of dark mode which can be considered a dipole. The three-level plasmonic system is employed to explain the physical mechanism of the PIT effect. Different from previous reported form (dipole-quadrupole coupling), the proposed is attributed to the dipole-dipole coupling. The PIT effect can be tuned by changing the coupling length between bright and dark mode as well as the Fermi energy of graphene. Our studies provide guidance for fabricating ultra-compact devices in practical application.  相似文献   

2.
Yan  Xicheng  Wang  Tao  Han  Xu  Xiao  Shuyuan  Zhu  Youjiang  Wang  Yunbo 《Plasmonics (Norwell, Mass.)》2017,12(5):1449-1455

A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.

  相似文献   

3.
Liu  Dongdong  Sun  Yan  Fan  Qiubo  Mei  Maofei  Wang  Jicheng  Pan  Yue-Wu  Lu  Jian 《Plasmonics (Norwell, Mass.)》2016,11(6):1621-1628

Plasmonically induced transparency (PIT) effect in a metal–insulator–metal waveguide coupled to asymmetric multi-rectangle resonators is investigated numerically. By adjusting parameters of resonators, we cannot only realize single, double, or treble PIT peaks in the compact structure, but also induce an off-to-on PIT optical response. Numerical simulation by finite element method was conducted to verify our designs. This proposed structure, hence has potential applications for ultra-compact optoelectronic devices at communication band.

  相似文献   

4.
Zhou  Ting  Gou  Xinyu  Xu  Wei  Li  Yong  Zhai  Xiang  Li  Hongjian  Wang  Lingling 《Plasmonics (Norwell, Mass.)》2021,16(2):323-332

We propose a dynamically tunable surface plasmon polaritons (SPPs) waveguide system based on bulk Dirac semimetals (BDS) containing only a side-coupled T-shaped cavity. Plasmon-induced transparency (PIT) is achieved in the terahertz band by introducing a position offset. We have analytically investigated the spectral characteristics of PIT in this system, indicating that the larger the position offset, the higher the peak of the PIT window. The spectrum responses of PIT system can be flexibly regulated via transforming the geometric parameters of the structure. At the same time, it is particularly sensitive to the refractive index of the surrounding medium, which is promising for sensing devices. In addition, the resonance frequency and peak transmission can be actively adjusted by controlling the Fermi energy of the BDS without reconstructing the geometric structure. Moreover, the optical delay time near the PIT peak reaches 11.001 ps, which has good slow-light characteristics and is a candidate in the field of slow-light equipment. The structure we designed may have potential application value in the design of SPPs light-guide devices.

  相似文献   

5.
Jin  Changming  Liu  Can  Tan  Qiulin  Zhang  Lei  Zhang  Yanan 《Plasmonics (Norwell, Mass.)》2022,17(3):1183-1190

Numerical and theoretical studies were conducted on the plasmon induced transparency (PIT) of the symmetrical structure of Dirac semi-metal films (DSFS). The films have a parallel strip and split resonant ring structure. After analysing the surface current intensity and distribution, it was found that the electromagnetically induced transparency is as a result of destructive interference between these two structures, with the amplitude modulation depth of the frequency of the transmission window reaching as high as 99.09%. Moreover, by adjusting the Fermi level of the DSFS, the Fermi level changed from 50 to 90 meV, and the transmission window blue-shifted from 0.529 to 0.799 THz. The transmission peak frequency was found to have a linear relationship with the Fermi level. Similarly, the transmission phase and group delay under different Fermi levels was investigated. The positive group delay of the film reaches 7.026 ps, which provides a direction for new applications of terahertz, such as optical storage and slow optical devices.

  相似文献   

6.

We propose dynamically switchable multispectral plasmon-induced transparency (PIT) with high modulation depth in a three-dimensional metamaterial standing on a flexible substrate. The proposed metamaterial is composed of a pair of metal–insulator–metal (MIM) nano-cut-wires and a pair of insulator–metal–insulator (IMI) nano-cut-wires. Results show that two PIT windows can be achieved because of the near-field coupling between the dipole supported by the IMI nano-cut-wire and two quadrupoles supported by the MIM structures. These two PIT windows can be blue-shifted or even flipped over by stretching the substrate along one direction, or be switched off by stretching along the other direction. A classical coupled oscillator model is developed to quantitatively describe and explain these results. We expect this work will find promising applications in multispectral sensors, slow light devices and nonlinear optical devices.

  相似文献   

7.
The plasmon-induced transparency (PIT) in ring-resonators coupled channel drop filter (CDF) systems is investigated theoretically and numerically in this paper. A coupled mode theory-based transfer matrix method (CMT-TMM) is introduced owning to the symmetric and evanescent coupling, which is confirmed by the finite-difference time-domain (FDTD) simulation results. The drop waveguide provides the necessary optical feedback for the interference effect in realizing the PIT, and a new way for adjusting PIT effect in a fixed structure is also given. Finally, the phase and the group dispersion in the transparency window are discussed for investigating the slow light effect in our systems, and a group index of ~22 is obtained. The proposed plasmonic systems possess both the slow light and the dropping properties and may have potential and flexible applications in fundamental research of integrated plasmonic devices.  相似文献   

8.
We propose a 3D metasurface structure with unsymmetrical metallic slices array. The tunable plasmon-induced transparency (PIT) effects and different electric field mode distributions could be realized by modulating the structure parameters and angle of incidence. The radiative and dark elements of the asymmetric metallic slices unit cell structure are analyzed. The transmission spectra and the electric fields distributions are studied by the finite element method (FEM). We demonstrate that PIT phenomena based on those metasurface array structures may have applications as tunable sensors and filters in nanophotonics and integrated optics.  相似文献   

9.
A novel metal-insulator-metal (MIM) plasmonic waveguides structure, which is composed by stub waveguide with nanodisk and Fabry-Perot (F-P) resonator, has been proposed and numerically simulated with the finite-difference time-domain (FDTD). Based on the three-level system, the extreme destructive interference between bright and dark resonators gives rise to the distinct plasmonically induced absorption (PIA) response with the abnormal dispersion and novel fast-light feature. Simultaneously, the dramatic double plasmonically induced transparency (PIT) effect with slow-light characteristic can also be achieved in the system. The relationship between the transmission characteristics and the geometric parameters is studied in detail. By optimum design, the modulation depth of the PIA transmission spectrum of 90 % with 0.145 and 0.14 ps fast-light effect can be gained simultaneously, and the peak transmissivity of the double PIT system of 75.2 and 72.8 % with ?0.38 ps slow light-effect can be achieved. The simulated transmission features are in agreement with the temporal-coupled mode theory (CMT). The characteristics of the system indicate an important potential application in integrated optical circuits such as slow-light and fast-light devices, high-performance filter, and optical storage.  相似文献   

10.
Xie  Yiyuan  Chai  Junxiong  Ye  Yichen  Song  Tingting  Liu  Bocheng  Zhang  Liangyi  Zhu  Yunchao  Liu  Yong 《Plasmonics (Norwell, Mass.)》2021,16(5):1809-1816

Slow light devices with buffering capability play a critical role in all-optical signal processing. In this paper, multiple slow light phenomena are implemented based on plasmon-induced transparency (PIT) in our device. The device mainly consists of dual tooth cavities coupled with stub resonators, respectively. Temporal coupled-mode theory model illustrates that the triple PIT phenomena can be achieved based on different formation mechanisms. The simulation results calculated by the finite-difference time-domain method reveal that significant slow light response occurs at two wavelength regions. In addition, the parameters of structure have an important influence on PIT response and slow light characteristics. Moreover, the separate manipulation of wavelength, transmission and group index at transparency peak can be achieved in different slow light channels by adjusting the structural parameters. This plasmonic device is of great significance for the design of optical networks on chips.

  相似文献   

11.
Wang  Jicheng  Niu  Yuying  Liu  Dongdong  Hu  Zheng-Da  Sang  Tian  Gao  Shumei 《Plasmonics (Norwell, Mass.)》2018,13(2):609-616

We propose a plasmonic structure based on the metal-insulator-metal waveguide with the side-coupled isosceles trapezoid cavities. Both of the structures based on the side-coupled trapezoid cavities separated or connected with waveguides can realize the plasmon-induced transparency (PIT). By adjusting the structure parameters, the off-to-on PIT response can be tunably achieved. The coupled mode theory (CMT) method is used to study the PIT phenomenon and explain the transmission characteristics. This work may provide a potential way for designing highly integrated photonic devices.

  相似文献   

12.
Fu  Guang-Lai  Zhai  Xiang  Li  Hong-Ju  Xia  Sheng-Xuan  Wang  Ling-Ling 《Plasmonics (Norwell, Mass.)》2016,11(6):1597-1602
Plasmonics - Tunable plasmon-induced transparency (PIT) is realized for the mid-infrared region only by using two parallel graphene nanostrips. The weak hybridization between the two bright modes...  相似文献   

13.
In this paper, we propose a novel planar semiconductor metamaterial which consists of two H-shape structures which are nested together and composed of InSb deposited on a thin quartz substrate. The two H-shape structures serve as the bright modes and are exited strongly by the incident wave and interact with each other. This coupling leads to a powerful plasmonically induced transparency (PIT) effect at terahertz frequencies. This scheme provides a way to achieve slow light, and the corresponding group index can reach a value of 1300. We calculated group velocity dispersion (GVD) and saw this structure was a low group velocity dispersion (LGVD) system. Therefore, the proposed structure will be useful in designing slow-light devices, optical buffers, delay lines, and ultra-sensitive sensors. We also showed that the proposed design is tunable, namely changes in geometric parameters and type of semiconductor can largely change the group index. In addition, we considered another application for our design that is a thermal dual-band terahertz metamaterial modulator and numerically obtained frequency and amplitude modulation depth, tunability bandwidth, and loss for this device. We obtained an amplitude modulator depth of 99.7 % and a frequency modulator depth of 47 % that verified this structure can be used in wireless communication and encode information systems in the THz regime.  相似文献   

14.
Chen  Hao  Xiong  Lei  Hu  Fangrong  Xiang  Yuanjiang  Dai  Xiaoyu  Li  Guangyuan 《Plasmonics (Norwell, Mass.)》2021,16(4):1071-1077

We propose an ultrasensitive and tunable mid-infrared sensor based on plasmon-induced transparency (PIT) in a monolayer black phosphorus metasurface. Results show that there are two PIT windows, each of which occurs when the long axis of the metasurface is placed along the MBP’s armchair and zigzag crystal directions, respectively. The corresponding sensors based on these PIT effects show high sensitivities of 7.62 THz/RIU and 7.36 THz/RIU. Both PIT frequencies can be tuned statically by varying the geometric parameters or dynamically by changing the electron doping of monolayer black phosphorus, making the sensors adaptable to tackle with a variety of scenarios. We expect that this work will advance the engineering of metasurfaces based on monolayer black phosphorus and promote their sensing applications.

  相似文献   

15.
We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.  相似文献   

16.
Tang  Chao  Niu  Qingshan  He  Yuanhao  Zhu  Huaxin  Wang  Ben-Xin 《Plasmonics (Norwell, Mass.)》2020,15(2):467-473

Tunable triple-peaks with the transmission intensity of more than 90% plasmonically induced transparency metamaterial resonator based on nested double π-shaped metallic structure is proposed at the terahertz frequency region, which is consisted of three sets of gold nanorods with different sizes placed on a dielectric substrate of SiO2. The coupling effect of localized electric field between different parts of the proposed structure can be used to explain the physical mechanism of three transparent windows. The finite-difference time-domain (FDTD) is used to study the spectral properties of the proposed structure, and the influence of the size of the nanorods and the relative distance between them on the spectral characteristics are also discussed. It can be seen that some obvious shift phenomena occur in the spectra with the change of these nanorods. These results indicate that the proposed structure opens up new avenues in many related applications, especially for multi-channel filters, optical switches, and sensors.

  相似文献   

17.
Passive integrated transponder (PIT) tags allow a range of individual‐level data to be collected passively and have become a commonly used technology in many avian studies. Although the potential adverse effects of PIT tags have been evaluated in several species, explicit investigations of their impacts on small (<12 g) birds are limited. This is important, because it is reasonable to expect that smaller birds could be impacted more strongly by application of PIT tags. In this study, we individually marked Black‐capped Chickadees (Poecile atricapillus), a small (circa 10 g) passerine, at the University of Alberta Botanic Garden to evaluate potential lethal and sublethal effects of two PIT tagging methods: attachment to leg bands or subcutaneous implantation. We used a Cox proportional hazards model to compare the apparent survival of chickadees with leg band (N = 79) and implanted PIT tags (N = 77) compared with control birds that received no PIT tags (N = 76) over the subsequent 2 years based on mist net recaptures. We used radio‐frequency identification (RFID) redetections of leg band PIT tags to evaluate sex‐specific survival and increase the accuracy of our survival estimates. We also used a generalized linear regression model to compare the body condition of birds recaptured after overwintering with leg band PIT tags, implanted PIT tags, or neither. Our analysis found no evidence for adverse effects of either PIT tagging method on survival or body condition. While we recommend carefully monitoring study animals and evaluating the efficacy of different PIT tagging methods, we have shown that both leg band and subcutaneously implanted PIT tags ethical means of obtaining individualized information in a small passerine.  相似文献   

18.
A simple T-shaped plasmonic nanostructure composed of two perpendicular coupled nanorods is proposed to produce strong Fano resonances. By the near-field coupling between the “bright” dipole and “dark” quadrupole plasmons of the nanorods, a deep Fano dip is formed in the extinction spectrum, which can be well fitted by the Fano interference model. The effects of the geometry parameters including nanorod length, coupling gap size, and coupling location to the Fano resonances are analyzed in detail, and a very high refractive index sensitivity is achieved by the Fano resonance. Also by adjusting the incident polarization direction, double Fano resonances can be formed by the interferences of the dipole, quadrupole, and hexapole plasmons. The proposed nanorod dimer structure is agile, and a trimer which supports double Fano resonances can be easily formed by introducing a third perpendicular coupled nanorod. The proposed T-shaped nanorod dimer structure may have applications in the fields of biological sensing and plasmon-induced transparency.  相似文献   

19.
The plasmonic properties of two closely adjacent gold nanocones of different sizes have been investigated. The plasmon modes of the first nanocone couple with the plasmon modes of the second one due to which a broad peak and a narrow peak emerges in the extinction spectrum, which can be categorized as bright and dark plasmon modes. The destructive interference of the two modes results in a sharp Fano dip in the spectrum. Several configurations of the conical nanodimer have been considered, which suggests that the plasmon coupling in the nanocone dimer is not only dependent on the interparticle distance and size of the nanoparticles but also on their spatial arrangement. The localized high near-field energy in the nanodimer can be used for surface-enhanced Raman spectroscopy applications.  相似文献   

20.
The Mach bands are directly related to the size and the shape of on-center off-surround neural units in human vision. The effects of various stimulus parameters were studied on both bright and dark bands of equal plateau intensities. At low overall intensities, the dark band increases markedly in width, while the bright band does not. However, the bandwidth is more affected by the brightness slope, than by the plateau intensity per se. In this case, both bands vary approximately linearly and inversely with the log of the slope. The bright bands are slightly wider (4′) than the dark bands, for matched intensities. Both bands almost double in width with only a ±30′ para-foveal fixation. Optical blur enlarges the bands as predicted from the spread function. A comparable enlarging effect found with pupil size increase is not so readily understood. The apparent centers of the bright bands are positioned significantly more asymmetrically between the two edges than are the dark band centers. Eccentric neural units are considered as possible explanations for some of these non-linearities. Supported, in part, by Research Grant No. EY00319-05 from the National Eye Institute, National Institutes of Health, Bethesda, Maryland, and by a fight for Sight Grant-in-Aid G-428 from the National Council to Combat Blindness, Inc., New York, New York.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号