首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
《New biotechnology》2015,32(5):473-484
Although the phenomenon of surface plasmon resonance (SPR) is known for more than a century now, traditional prism-based SPR platforms have hardly escaped the research laboratories despite being recognized for the sensitive and specific performance. Significant efforts have been made over the last years to overcome their existing limitations by coupling the SPR phenomenon to the fiber optic (FO) technology. While this platform has been promoted as cost-effective and simpler alternative capable of handling label-free bioassays, quantification and real-time monitoring of biomolecular interactions, examples of its applicability in sensing and biosensing remain to date very limited. The FO-SPR system is still in development and requires further advancements for reaching the stability and sensitivity of the benchmark SPR systems. Among existing strategies for device improvement, those based on modifying the FO tips using nanomaterials are mostly studied. These small-scale objects provide a wide range of possibilities for alternating the architecture of the FO sensitive zone, enabling also unique effects such as localized SPR (LSPR). This mini-review summarizes the latest innovations in the fabrication procedures which use nanoparticles or other nanomaterials, aiming at FO-SPR technology performance improvements, as well as addition of new device features and functionalities.  相似文献   

2.
费俭  陈义 《生命科学》2003,15(2):92-94
表面等离子体共振(surface plasmon resonance,SPR)依据光学—介质相互作用原理建立,属于实时和非标记的测试方法。SPR方法在研究分子间相互作用方面具有其独特的优势,其非标记和实时检测以及可以进行动力学分析的特点,给研究生物大分子的相互作用提供了诱人的解决方案。近来,随着SPR成像技术和SPR芯片制备技术的进展,将为功能基因组学和蛋白质组学研究提供重要的新的技术平台。  相似文献   

3.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

4.
Conformational changes of proteins immobilized on solid matrices were observed by measuring the adsorption of Triton X-100 (TX), a nonionic detergent, as a hydrophobic probe with BIACORE, a biosensor that utilizes the phenomenon of surface plasmon resonance (SPR). Two kinds of proteins, alpha-glucosidase and lysozyme, were covalently attached to dextran matrices on the sensor surface in the flow cell and then exposed to various concentrations of TX solution. We measured SPR signal changes derived from adsorption of TX to the immobilized proteins and calculated the monolayer adsorption capacity using the Brunauer-Emmett-Teller (BET) equation. The results demonstrated that monolayer adsorption capacity is proportional to the amount of immobilized proteins. Further, the unfolding process of immobilized proteins on the sensor surface induced by guanidine hydrochloride was investigated by monitoring SPR signal increases due to the adsorption of TX to the exposed hydrophobic region of the protein. Results strongly suggested that the increase in the SPR signal reflected the formation of the agglutinative unfolded state. We expect our measuring method using the SPR sensor and TX adsorption will be a novel tool to provide conformational information regarding various proteins on solid matrices.  相似文献   

5.
Plasmonics - In the present communication, a fiber optic biosensor based on surface plasmon resonance (SPR) phenomenon, having bilayers of Ag-Pt with graphene as a sensing layer, is presented....  相似文献   

6.
In the haemostatic system a multitude of processes are intertwined in fine-tuned interactions that arrest bleeding, keep the circulatory system open, and the blood flowing. The occurrence of both surface and bulk interactions adds an additional dimension of complexity. These insights have led to the belief that global overall procedures can inform on the likely behaviour of the system in health and disease. Two sensing procedures: surface plasmon resonance (SPR), which senses surface interactions, and free oscillation rheometry (FOR), which senses interactions within the bulk, have been combined and evaluated. The contribution of blood cells, mainly platelets, to the SPR and FOR signals was explored by simultaneous SPR and FOR measurement during native whole blood coagulation, accelerated via the platelets through addition of SFLLRN peptide and inhibition of platelet aggregation with abciximab (ReoPro) and of shape change with cytochalasin E. The SPR technique was found to be sensitive to inhibition of blood cell functions such as adhesion to and spreading on surfaces, as well as platelet aggregation. SPR seemed not to be directly sensitive to fibrin polymerisation in coagulating whole blood. The FOR technique detected the coagulation as a bulk phenomenon, i.e. the gelation of the blood due to fibrin formation was detected. The combination of SPR and FOR may therefore be suitable for studies on blood cell functions during coagulation.  相似文献   

7.
Methods for registration of intermolecular interactions based on the phenomenon of surface plasmon resonance (SPR) have become one of the most efficient tools to solve fundamental and applied problems of analytical biochemistry. Nevertheless, capabilities of these methods are often insufficient to detect low concentrations of analytes or to screen large numbers of objects. That is why considerable efforts are directed at enhancing the sensitivity and efficiency of SPR-based measurements. This review describes the basic principles of the detection of intermolecular interactions using this method, provides a comparison of various types of SPR detectors, and classifies modern approaches to enhance sensitivity and efficiency of measurements.  相似文献   

8.
Sensors based on surface plasmon resonance (SPR) allow rapid, label-free, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light into a thin metallic film. Although SPR is not intrinsically a radiative process, when the metallic coating which support the plasmonic wave exhibits a significant surface roughness, the surface plasmon can itself couple to the local photon states, and emit light. Here we show that using silver coated optical fibres, this novel SPR transducing mechanism offers significant advantages compare to traditional reflectance based measurements such as lower dependency on the metallic thickness and higher signal to noise ratio. Furthermore, we show that more complex sensor architectures with multiple sensing regions scattered along a single optical fibre enable multiplexed detection and dynamic self referencing of the sensing signal. Moreover, this alternative approach allows to combine two different sensing technologies, SPR and fluorescence sensing within the same device, which has never been demonstrated previously. As a preliminary proof of concept of potential application, this approach has been used to demonstrate the detection of the seasonal influenza A virus.  相似文献   

9.
It is well known that surface plasmon resonance (SPR) can selectively enhance the photoluminescence (PL) from nearby chromophores with a single emission peak at an appropriate distance. Here, we combine white light-emitting CdS quantum dot nanocrystals containing band-edge and surface-state emissions simultaneously with Ag nanoparticles and study the interaction between them. It is found that the surface-state emission is always enhanced while the band-edge emission quenched regardless of the SPR wavelength of Ag nanoparticles. This phenomenon reveals that the SPR of Ag nanoparticles is not enhancing the emission from a wavelength-matched state. We propose that the surface plasmon of Ag nanoparticles is first excited by the energy of the band-edge emission and then the excited energetic electrons transfer to the surface-state of CdS. Through this energy transfer process, the surface-state emission is enhanced and band-edge emission quenched. This investigation can not only deliver understanding of the complicated interaction between metallic nanoparticles and nearby multi-emission-peak contained chromophores, but it also has potential applications in tuning the color temperature of white light-emitting materials.  相似文献   

10.
11.
Surface plasmon resonance (SPR) is a well-established method for studying interactions between small molecules and biomolecules. In particular, SPR is being increasingly applied within fragment-based drug discovery; however, within this application area, the limited sensitivity of SPR may constitute a problem. This problem can be circumvented by the use of label-enhanced SPR that shows a 100-fold higher sensitivity as compared with conventional SPR. Truly label-free interaction data for small molecules can be obtained by applying label-enhanced SPR in a surface competition assay format. The enhanced sensitivity is accompanied by an increased specificity and inertness toward disturbances (e.g., bulk refractive index disturbances). Label-enhanced SPR can be used for fragment screening in a competitive assay format; the competitive format has the added advantage of confirming the specificity of the molecular interaction. In addition, label-enhanced SPR extends the accessible kinetic regime of SPR to the analysis of very fast fragment binding kinetics. In this article, we demonstrate the working principles and benchmark the performance of label-enhanced SPR in a model system—the interaction between carbonic anhydrase II and a number of small-molecule sulfonamide-based inhibitors.  相似文献   

12.
13.
In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.  相似文献   

14.
Recently, the observation of pH-induced conformational changes of biomolecules supported on carboxymethyldextran (CMD)-coated surfaces measured using surface plasmon resonance (SPR) has been reported. However, it is apparent that the evidence reported in the literature is ambiguous. The research presented in this paper describes investigations to study the changing SPR signal of immobilized biomolecules as a function of varying pH, to provide a detailed understanding of the origin of the pH-induced changes in the SPR profile. SPR measurements were performed with cytochrome c, concanavalin A, and poly-L-lysine, biomolecules that exhibit diverse conformational responses to changing pH, covalently immobilized onto CMD-coated supports. These SPR measurements were supported by circular dichroism (CD) solution studies. The SPR profiles recorded were not consistent with the conformational transitions of the biomolecules as observed using CD. An alternative explanation for the observed shifts in SPR is proposed, which explains the SPR profiles in terms of electrostatic interaction effects between the immobilized biomolecules and the carboxymethyldextran matrix.  相似文献   

15.
In this paper, a new simple approach for sensitivity optimization in surface plasmon resonance (SPR) chemosensors based on colorimetric ligands is presented. A new design of SPR sensor with tunable analytical wavelength (lambda(SPR)) was constructed for this purpose, to perform studies on the ligand absorbance spectra related sensitivity enhancement. Unlike commercial SPR sensors which operate at one lambda(SPR), the new device can be used for sensitivity analysis at selected lambda(SPR) in the range 550-750 nm, offering the possibility to identify the highest sensitivity lambda(SPR) in regard to the spectral changes of the selected ligand. Measurements can be easily done in ligand bulk solutions without immobilization steps. Sensitivity enhancement analysis and optimization of lambda(SPR) on chromogenic reagents with hypsochromic shift in their absorption spectra are demonstrated in this contribution. Optimal selection of analytical wavelength, set at the absorbance peak of chromogenic reagent Eriochrome Black T (EBT) was observed to result in up to two times increased SPR sensitivity to Cd(2+) compared to wavelengths selected in other parts of the ligand absorbance spectra, with a limit of detection (LOD) 0.2 ppm. The sensitivity enhancement at optimal lambda(SPR) was observed to be related to increased refractive index (n), drop in extinction coefficient (alpha) and simultaneous hypsochromic shift of the EBT absorbance spectra causing the lambda(SPR) to match the absorbance peak shoulder.  相似文献   

16.
17.
基于表面等离子共振技术的配体垂钓技术能在蛋白质组水平上研究蛋白质的相互作用与功能,提供控制细胞功能的新靶标.其通过将受体固定在芯片表面,当被检测样品流过芯片表面时,配体与受体相结合, 实现俘获未知的相互作用的伙伴蛋白或复合体,并结合质谱技术鉴定出未知蛋白及其序列.  相似文献   

18.
This paper describes the use of a cuvette-based surface plasmon resonance (SPR) instrument to measure biocatalyzed precipitation reactions. Enzyme-modified SPR sensor disk forms the base of a cuvette, in which the substrate solution is added with stirring. The determination of the substrate concentration relies on the measurement of SPR angle shift (Deltatheta(SPR)) induced by the deposition of the insoluble products without involving in any electrochemical reactions. As examples, horseradish peroxidase (HRP)-modified monoenzyme SPR sensor and HRP-glucose oxidase bienzyme-layered sensor are created to determine hydrogen peroxide and glucose via the catalyzed oxidation of 4-chloro-1-naphthol (4-CN). The deposition of the oxidized 4-CN-insoluble products leads to SPR angle shifts, which are linear to H(2)O(2) and glucose in the concentration ranges of 0.067-7.24 x 10(-5) and 0.7-8.3 x 10(-4) mM, respectively. The SPR sensitivities are greater than those of nonelectrochemical quartz crystal microbalance (QCM) (the parallel results in this study) and compare favorable with those of electrochemical QCM and electrochemical SPR methods. This study opens the field for enhanced SPR measurements by using biocatalyzed precipitation as a signal amplification method.  相似文献   

19.
SPR, a temperate Bacillus subtilis phage, codes for a DNA methyltransferase that can methylate the sequences GGCC (or GGCC) and CCGG at the cytosines indicated. We show here that it can also methylate the sequence CC(A/T)GG and protect it from cleavage with EcoRII and ApyI. This methylation can be seen in vivo as well as in vitro with purified SPR methyltransferase. SPR19 and SPR83 are two mutant phages, defective in GGCC or CCGG methylation, respectively. These mutants have not lost their ability to methylate CC(A/T)GG sites. Mutation SPR26 has lost the ability to methylate all three sites. Thus the SPR methyltransferase codes for three genetically distinguishable methylation abilities.  相似文献   

20.
A family of small proline-rich proteins (SPR1s) is induced in cells undergoing squamous differentiation. Because SPR1 mRNA is detected in mesenchymal nasal cells of rats exposed to cigarette smoke, expression of this mRNA in other nonsquamous cells and tissues was investigated. Using PCR, low levels of SPR1 mRNA were identified in a number of nondifferentiating cell lines and in nonsquamous tissues. G0SPR1 mRNA, the hamster homologue of SPR1 mRNA, was increased 10-fold in Chinese hamster ovary (CHO) cells when the culture reached 80–90% confluence and was downregulated after cells ceased growing at 100% confluence. The deduced amino acid sequence of G0SPR1 showed a high homology to the family of SPR1 from different species. Affinity-purified antibodies to SPR1 reacted to about 50% of the CHO cell population, indicating that the protein is expressed at specific stages of the cell cycle. CHO cells that were switched to low-serum medium when they were at 60% confluence showed an increase in G0SPR1 levels before the cells entered G0, indicating that G0SPR1 may be a signal to cells entering G0. Because expression of the SPR1 family of proteins is associated with squamous differentiation, the observations in the nondifferentiating CHO cells indicate that these proteins may play a role in mediating the withdrawal from the cell cycle prior to the commitment to differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号