首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report identification of new lead compounds based on quinoline and indenoquinolines with variable side chains as antiprotozoal agents. Quinolines 32, 36 and 37 (Table 1) and indenoquinoline derivatives 14 and 23 (Table 2) inhibit the in vitro growth of the Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma brucei rhodesiense subspecies and Leishmania infantum with IC50 = 0.25 μM. These five compounds have superior activity to that of the front-line drugs such as benznidazole, nifurtimox and comparable to amphotericin B. Thus these compounds constitute new ‘leads’ for further structure–activity studies as potential active antiprotozoal agents.  相似文献   

2.
Dicationic 2,6-diphenylpyrazines, aza-analogues and prodrugs were synthesized; evaluated for DNA affinity, activity against Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.) in vitro, efficacy in T. b. r. STIB900 acute and T. b. brucei GVR35 CNS mouse models. Most diamidines gave poly(dA-dT)2 ΔTm values greater than pentamidine, IC50 values: T. b. r. (4.8–37 nM) and P. f. (10–52 nM). Most diamidines and prodrugs gave cures for STIB900 model (11, 19a and 24b 4/4 cures); 12 3/4 cures for GVR35 model. Metabolic stability half-life values for O-methylamidoxime prodrugs did not correlate with STIB900 results.  相似文献   

3.
Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50 = 120 nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25 μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.  相似文献   

4.
The synthesis of nine nostocarboline derivatives with substitutions of the 2-methyl group by alkyl, aryl and functionalized residues, 10 symmetrical bis cationic dimers linking 6-Cl-norharmane through the 2-position and fifteen derivatives of the marine alkaloids eudistomin N and O is reported. These compounds were evaluated in vitro against four parasites (Trypanosoma brucei rhodesiense STIB 900, Trypanosoma cruzi Tulahuen C2C4, Leishmania donovani MHOM-ET-67/L82 axenic amastigotes, and Plasmodium falciparum K1 strain), against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155 and Corynebacterium glutamicum ATCC13032, and cytotoxicity was determined against L6 rat myoblast cells. Nostocarboline and derivatives displayed potent and selective in vitro inhibition of P. falciparum with weak cytotoxicity. The dimers displayed submicromolar inhibition of L. donovani and T. brucei, and nanomolar activity against P. falciparum, albeit with pronounced cytotoxicity. One dimer showed a MIC99 value against M. tuberculosis of 2.5 μg/ml. The alkylated eudistomin N and O derivatives displayed activities down to 18 nM against P. falciparum for N-Me Eudistomin N. Four dimers, nostocarboline and three eudostomin derivatives were evaluated in an in vivo Plasmodium berghei mouse model. No significant activity was observed for the dimers, but a 50% reduction in parasitaemia was observed at 4 × 50 mg/kg ip for nostocarboline.  相似文献   

5.
We previously reported the phenylchloronitrobenzamides (PCNBs), a novel class of compounds active against the species of trypanosomes that cause Human African Trypanosomiasis (HAT). Herein, we explored the potential to adjust the reactivity of the electrophilic chloronitrobenzamide core. These studies identified compound 7d that potently inhibited the growth of trypanosomes (EC50 = 120 nM for Trypanosoma b. brucei, 18 nM for Trypanosoma b. rhodesiense, and 38 nM for Trypanosoma b. gambiense) without significant cytotoxicity against mammalian cell lines (EC50 > 25 μM for HepG2, HEK293, Raji, and BJ cell lines) and also had good stability in microsomal models (t1/2 > 4 h in both human and mouse). Overall these properties indicate the compound 7d and its analogs are worth further exploration as potential leads for HAT.  相似文献   

6.
2-(2-Benzamido)ethyl-4-phenylthiazole (1) was one of 1035 molecules (grouped into 115 distinct scaffolds) found to be inhibitory to Trypanosoma brucei, the pathogen causing human African trypanosomiasis, at concentrations below 3.6 μM and non-toxic to mammalian (Huh7) cells in a phenotypic high-throughput screen of a 700,000 compound library performed by the Genomics Institute of the Novartis Research Foundation (GNF). Compound 1 and 72 analogues were synthesized in this lab by one of two general pathways. These plus 10 commercially available analogues were tested against T. brucei rhodesiense STIB900 and L6 rat myoblast cells (for cytotoxicity) in vitro. Forty-four derivatives were more potent than 1, including eight with IC50 values below 100 nM. The most potent and most selective for the parasite was the urea analogue 2-(2-piperidin-1-ylamido)ethyl-4-(3-fluorophenyl)thiazole (70, IC50 = 9 nM, SI > 18,000). None of 33 compounds tested were able to cure mice infected with the parasite; however, seven compounds caused temporary reductions of parasitemia (⩾97%) but with subsequent relapses. The lack of in vivo efficacy was at least partially due to their poor metabolic stability, as demonstrated by the short half-lives of 15 analogues against mouse and human liver microsomes.  相似文献   

7.
A novel series of extended DAPI analogues were prepared by insertion of either a carbon–carbon triple bond (16ad) or a phenyl group (21a,b and 24) at position-2. The new amidines were evaluated in vitro against both Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.). Five compounds (16a, 16b, 16d, 21a, 21b) exhibited IC50 values against T. b. r. of 9 nM or less which is two to nine folds more effective than DAPI. The same five compounds exhibited IC50 values against P. f. of 5.9 nM or less which is comparable to that of DAPI. The fluorescence properties of these new molecules were recorded, however; they do not offer any advantage over those of DAPI.  相似文献   

8.
Seven novel diamidino 2,5-bis(aryl)thiazoles (5ag) were synthesized and evaluated against Trypanosoma brucei rhodensiense (T. b. r.) and Plasmodium falciparum (P. f.). The diamidines were obtained directly from the corresponding bis-nitriles (4ag) by the action of lithium bis(trimethylsilyl)amide. The bis-nitriles 4af were synthesized in four steps starting with the Stille coupling of 2-tributyltinthiazole with the appropriate cyanoaryl halide. The bis-nitrile 5g was obtained by the palladium facilitated coupling of the mixed tin-silyl reagent 2-trimethylsilyl-5-trimethyltinthiazole with 2-bromo-5-cyanopyridine. The amidoxime potential prodrugs 6ae, 6g were obtained by the reaction of hydroxylamine with the bis-nitriles. O-Methylation of the amidoximes gave the corresponding N-methoxyamidines 7ac, 7e, 7g. The diamidines showed strong DNA binding affinity as reflected by ΔTm measurements. Four of the diamidines 5a, 5b, 5d and 5e were highly active in vitro against P. f. giving IC50 values between 1.1 and 2.5 nM. The same four diamidines showed IC50 values between 4 and 6 nM against T. b. r. The selectivity indices ranged from 233 to 9175. One diamidine 5a produced one of four cures at an ip dose of 4 × 5 mg/kg in the STIB900 mouse model for acute African trypanosomiasis. The amidoxime and N-methoxyamidine of 5a were the only produgs to provide cures (1/4 cures) in the same mouse model on oral dosage at 4 × 25 mg/kg.  相似文献   

9.
Malaria (Plasmodium spp.) and human African trypanosomiasis (Trypanosoma brucei spp.) are vector borne, deadly parasitic diseases. While chemotherapeutic agents for both diseases are available, difficulty in disease eradication and development of drug resistance require that new therapies targeting unexplored pathways or exploiting novel modes of action be developed. Intracellular Plasmodium and extracellular Trypanosoma brucei may have unique and essential requirements for divalent metal ions, beyond that deemed physiological for the host. Membrane Active Chelators (MACs), biologically active only in a hydrophobic lipid environment, are able to bind metal ions at elevated non-physiological concentrations in the vicinity of cell membranes. A dose–response relationship study using validated viability assays revealed that two MAC drugs, DP-b99 and DP-460, were cytotoxic for these parasites in vitro. The 50% effective concentration (EC50) values for DP-b99 and DP-460 were 87 μM and 39 μM for Trypanosoma brucei brucei and 21 μM and 28 μM for erythrocytic Plasmodium falciparum, respectively. Furthermore, drug potency was maintained for at least 24 h in serum containing medium at 37 °C. While the exact mechanism of action of MACs against intracellular malaria and extracellular African trypanosome parasites has yet to be determined, their potential as antiparasitic agents warrants further investigation.  相似文献   

10.
A series of novel quinolinone–chalcone hybrids and analogues were designed, synthesized and their biological activity against the mammalian stages of Trypanosoma brucei and Leishmania infantum evaluated. Promising molecular scaffolds with significant microbicidal activity and low cytotoxicity were identified. Quinolinone–chalcone 10 exhibited anti-parasitic properties against both organisms, being the most potent anti-L. infantum agent of the entire series (IC50 value of 1.3 ± 0.1 μM). Compounds 4 and 11 showed potency toward the intracellular, amastigote stage of L. infantum (IC50 values of 2.1 ± 0.6 and 3.1 ± 1.05 μM, respectively). Promising trypanocidal compounds include 5 and 10 (IC50 values of 2.6 ± 0.1 and 3.3 ± 0.1 μM, respectively) as well as 6 and 9 (both having IC50 values of <5 μM). Chemical modifications on the quinolinone–chalcone scaffold were performed on selected compounds in order to investigate the influence of these structural features on antiparasitic activity.  相似文献   

11.
We describe here the identification of non-peptidic vinylsulfones that inhibit parasite cysteine proteases in vitro and inhibit the growth of Trypanosoma brucei brucei parasites in culture. A high resolution (1.75 Å) co-crystal structure of 8a bound to cruzain reveals how the non-peptidic P2/P3 moiety in such analogs bind the S2 and S3 subsites of the protease, effectively recapitulating important binding interactions present in more traditional peptide-based protease inhibitors and natural substrates.  相似文献   

12.
Fifty novel prodrugs and aza-analogues of 3,5-bis(4-amidinophenyl)isoxazole and its derivatives were prepared. Eighteen of the 24 aza-analogues exhibited IC50 values below 25 nM against Trypanosoma brucei rhodesiense or Plasmodium falciparum. Six compounds had antitrypanosomal IC50 values below 10 nM. Twelve analogues showed similar antiplasmodial activities, including three with sub-nanomolar potencies. Forty-four diamidines (including 16 aza-analogues) and the 26 prodrugs were evaluated for efficacy in mice infected with T. b. rhodesiense STIB900. Six diamidines cured 4/4 mice at daily 5 mg/kg intraperitoneal doses for 4 days, giving results far superior to pentamidine and furamidine. One prodrug attained 3/4 cures at daily 25 mg/kg oral doses for 4 days.  相似文献   

13.
Trypanosomiasis and leishmaniasis pose major public health threats for many countries, particularly those in sub-Saharan Africa and South America. In the present study, we evaluated the in vitro antiprotozoal activity of three irregular, linear sesquiterpene lactones recently isolated from Greek Anthemis auriculata, namely anthecotulide (1), 4-hydroxyanthecotulide (2) and 4-acetoxyanthecotulide (3). Trypomastigote forms of Trypanosoma brucei rhodesiense and T. cruzi as well as axenic amastigotes of Leishmania donovani were used for testing. The cytotoxic potential of the compounds was also assessed against mammalian (rat) skeletal myoblasts (L6 cells). All compounds showed potent trypanocidal and leishmanicidal activity. 4-Hydroxyanthecotulide (2) appeared to be the most active compound against all parasites, particularly towards T. b. rhodesiense (IC50 0.56 μg/ml), whereas 4-acetoxyanthecotulide (3) was the least active. All three metabolites possessed toxicity on mammalian cells, which might limit their use as antiprotozoal agents.  相似文献   

14.
Mass-directed isolation of the CH2Cl2/MeOH extract from the leaves of Cryptocarya obovata resulted in the purification of a new trypanocidal α-pyrone, 7′,8′-dihydroobolactone (1). The chemical structure of 1 was determined by 1D/2D NMR, MS and CD data analysis. 7′,8′-Dihydroobolactone was shown to inhibit Trypanosoma brucei brucei with an IC50 of 2.8 μM.  相似文献   

15.
A novel series of 1,2,4-triazino-[5,6b]indole-3-thione covalently linked to 7-chloro-4-aminoquinoline have been synthesized and evaluated for their in vitro activity against extracellular promastigote and intracellular amastigote form of Leishmania donovani. Among all tested compounds, compounds 7a and 7b were found to be the most active with IC50 values 1.11, 0.36 μM and selectivity index (SI) values 67, >1111, respectively, against amastigote form of L. donovani which is several folds more potent than the standard drugs, miltefosine (IC50 = 8.10 μM, SI = 7) and sodium stibo-gluconate (IC50 = 54.60 μM, SI  7).  相似文献   

16.
17.
A library of 1,4-benzodiazepines has been synthesised and evaluated for activity against Trypanosoma brucei, a causative parasite of Human African Trypanosomiasis (HAT). The most potent of these derivatives has an MIC value of 0.97 μM. Herein we report the design, synthesis and biological evaluation of the abovementioned compounds.  相似文献   

18.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

19.
The 2-acylamino-5-nitro-1,3-thiazole derivatives (114) were prepared using a one step reaction. All compounds were tested in vitro against four neglected protozoan parasites (Giardia intestinalis, Trichomonas vaginalis, Leishmania amazonensis and Trypanosoma cruzi). Acetamide (9), valeroylamide (10), benzamide (12), methylcarbamate (13) and ethyloxamate (14) derivatives were the most active compounds against G. intestinalis and T. vaginalis, showing nanomolar inhibition. Compound 13 (IC50 = 10 nM), was 536-times more active than metronidazole, and 121-fold more effective than nitazoxanide against G. intestinalis. Compound 14 was 29-times more active than metronidazole and 6.5-fold more potent than nitazoxanide against T. vaginalis. Ureic derivatives 2, 3 and 5 showed moderate activity against L. amazonensis. None of them were active against T. cruzi. Ligand efficiency indexes analysis revealed higher intrinsic quality of the most active 2-acylamino derivatives than nitazoxanide and metronidazole. In silico toxicity profile was also computed for the most active compounds. A very low in vitro mammalian cytotoxicity was obtained for 13 and 14, showing selectivity indexes (SI) of 246,300 and 141,500, respectively. Nitazoxanide showed an excellent leishmanicidal and trypanocidal effect, repurposing this drug as potential new antikinetoplastid parasite compound  相似文献   

20.
Series of benzimidazole and benzothiazole linked phosphoramidates and phosphoramidothioates (5aj) and benzimidazole linked phenylphosphoramidates and phenylphosphoramidothioates (10ae) were synthesized. The title compounds were preliminary screened for mosquito larvicidal properties against Aedes albopictus and Culex quinquefasciatus at different concentration from 40 to 5 mg/L. Among the screened compounds three compounds revealed potential larvicidal effects with 100% mortality in the order of 10e > 5j > 5e. Compound 10e was found to be the most toxic compound to Ae. albopictus and Cx. quinquefasciatus. The LC50 of 10e against Ae. albopictus was found to be 6.42 and 5.25 mg/L at 24 and 48 h, respectively, whereas it was 7.01 and 3.88 mg/L, respectively in Cx. quinquefasciatus. Temephos was used as positive control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号