首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resonant mode characteristics of the nanoscale surface plasmon polaritons (SPP) waveguide filter with rectangle cavity are studied theoretically. By using the finite difference time domain method, both the band-stop- and band-pass-type rectangle SPP filters are analyzed. The results show that the whispering gallery mode (WGM) and the Fabry–Perot (FP) mode can be supported by the rectangle SPP resonator. Furthermore, both traveling-wave mode and standing-wave mode can be realized by the WGM, while only standing-wave mode can be introduced by the FP mode. The traveling-wave mode can only be realized by the square-shaped SPP resonator, and the traveling-wave mode is splitted into two standing-wave modes by transforming the cavity shape from square to rectangle. Also, the effects of the cavity shape, cavity size, and coupling gap size on the transmission spectra of the SPP resonators are analyzed in detail. This simple SPP waveguide filter is very promising for the high-density SPP waveguide integrations.  相似文献   

2.
We report results from microscopic molecular dynamics and free energy perturbation simulations of the KcsA potassium channel based on its experimental atomic structure. Conformational properties of selected amino acid residues as well as equilibrium positions of K(+) ions inside the selectivity filter and the internal water cavity are examined. Positions three and four (counting from the extracellular site) in the experimental structure correspond to distinctly separate binding sites for K(+) ions inside the selectivity filter. The protonation states of Glu71 and Asp80, which are close to each other and to the selectivity filter, as well as K(+) binding energies are determined using free energy perturbation calculations. The Glu71 residue which is buried inside a protein cavity is found to be most stable in the neutral form while the solvent exposed Asp80 is ionized. The channel altogether exothermically binds up to three ions, where two of them are located inside the selectivity filter and one in the internal water cavity. Ion permeation mechanisms are discussed in relation to these results.  相似文献   

3.
The thermodynamics of cation permeation through the KcsA K(+) channel selectivity filter is studied from the perspective of a physically transparent semimicroscopic model using Monte Carlo free energy integration. The computational approach chosen permits dissection of the separate contributions to ionic stabilization arising from different parts of the channel (selectivity filter carbonyls, single-file water, cavity water, reaction field of bulk water, inner helices, ionizable residues). All features play important roles; their relative significance varies with the ion's position in the filter. The cavity appears to act as an electrostatic buffer, shielding filter ions from structural changes in the inner pore. The model exhibits K(+) vs. Na(+) selectivity, and roughly isoenergetic profiles for K(+) and Rb(+), and discriminates against Cs(+), all in agreement with experimental data. It also indicates that Ba(2+) and Na(+) compete effectively with permeant ions at a site near the boundary between the filter and the cavity, in the vicinity of the barium blocker site.  相似文献   

4.
We study crossflow filtration mechanisms in suspension-feeding fishes using computational fluid dynamics to model fluid flow and food particle movement in the vicinity of the gill rakers. During industrial and biological crossflow filtration, particles are retained when they remain suspended in the mainstream flow traveling across the filter surface rather than traveling perpendicularly to the filter. Here we identify physical parameters and hydrodynamic processes that determine food particle movement and retention inside the fish oral cavity. We demonstrate how five variables affect flow patterns and particle trajectories: (1) flow speed inside the fish oral cavity, (2) incident angle of the flow approaching the filter, (3) dimensions of filter structures, (4) particle size, and (5) particle density. Our study indicates that empirical experiments are needed to quantify flow parameters inside the oral cavity, and morphological research is needed to quantify dimensions of the filter apparatus such as gill rakers, the gaps between rakers, and downstream barriers. Ecological studies on suspension-feeding fishes are also needed to quantify food particle size and density, as these variables can affect particle retention due to hydrodynamic processes during crossflow filtration.  相似文献   

5.
Potassium channels enable K(+) ions to move passively across biological membranes. Multiple nanosecond-duration molecular dynamics simulations (total simulation time 5 ns) of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal motions of ions, water, and protein. Comparison of simulations with and without K(+) ions indicate that the absence of ions destabilizes the structure of the selectivity filter. Within the selectivity filter, K(+) ions interact with the backbone (carbonyl) oxygens, and with the side-chain oxygen of T75. Concerted single-file motions of water molecules and K(+) ions within the selectivity filter of the channel occur on a 100-ps time scale. In a simulation with three K(+) ions (initially two in the filter and one in the cavity), the ion within the central cavity leaves the channel via its intracellular mouth after approximately 900 ps; within the cavity this ion interacts with the Ogamma atoms of two T107 side chains, revealing a favorable site within the otherwise hydrophobically lined cavity. Exit of this ion from the channel is enabled by a transient increase in the diameter of the intracellular mouth. Such "breathing" motions may form the molecular basis of channel gating.  相似文献   

6.
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter.  相似文献   

7.
Anatomical and histological studies of the endangered atherinid Chirostoma estor estor reveal that the species is ideally adapted to feeding on zooplankton. It has a superior protractile mouth with short unicuspid mandibular teeth. The buccal cavity is a highly adapted branchial sieve with branchial spines which develop in complexity with age to form a continuous flexible interdigitated mat. The filter bed has many of the characteristics of a cross-flow filter, which is ideal for a continuously feeding and filtering animal as the filter bed will not readily become occluded. The aggregates from the cross-flow filter pass to the rear of the buccal cavity where they are triturated by well-developed pharyngeal teeth. The species has a short intestine (<0·3 × body length) with no histological evidence of stomach-like structures, no pyloric caecae and with trypsin-like enzymes operating at high pH. Feeding trials with natural plankton showed a sequence of particle size selection as the animals grow, with older animals taking cladocerans up to 700 μm in diameter. Although some adults occasionally take small fish prey, cumulatively, the present studies indicate that the fish is a zooplankton feeder throughout all its life stages.  相似文献   

8.
A tunable wavelength filter based on plasmonic metal?Cdielectric?Cmetal waveguide with optofluidics pump system has been proposed and numerically investigated. The finite difference time domain method with perfectly matched layer-absorbing boundary condition is adopted to simulate and study their properties. An analytical solution to the resonant condition of the structure is derived by means of the cavity theory. It is found that the resonant wavelength of the filter is easily tuned in a broadband by manipulating the fluid filled in the cavity. Both analytical and simulative results reveal that the resonant wavelengths are proportional to the volume and refractive index of liquid in the cavity and are related to the structure of the filter. The resonant wavelengths of this structure can be changed from 1,106 to around 1,800?nm in this paper. The waveguide filter may become a choice for the design of devices in highly integrated optical circuits.  相似文献   

9.
This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.  相似文献   

10.
Slow inactivation involves a local rearrangement of the outer mouth of voltage-gated potassium channels, but nothing is known regarding rearrangements in the cavity between the activation gate and the selectivity filter. We now report that the cavity undergoes a conformational change in the slow-inactivated state. This change is manifest as altered accessibility of residues facing the aqueous cavity and as a marked decrease in the affinity of tetraethylammonium for its internal binding site. These findings have implications for global alterations of the channel during slow inactivation and putative coupling between activation and slow-inactivation gates.  相似文献   

11.
Molecular dynamics (MD) simulations of an atomic model of the KcsA K(+) channel embedded in an explicit dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayer solvated by a 150 mM KCl aqueous salt solution are performed and analyzed. The model includes the KcsA K(+) channel, based on the recent crystallographic structure of, Science. 280:69-77), 112 DPPC, K(+) and Cl(-) ions, as well as over 6500 water molecules for a total of more than 40,000 atoms. Three K(+) ions are explicitly included in the pore. Two are positioned in the selectivity filter on the extracellular side and one in the large water-filled cavity. Different starting configurations of the ions and water molecules in the selectivity filter are considered, and MD trajectories are generated for more than 4 ns. The conformation of KcsA is very stable in all of the trajectories, with a global backbone root mean square (RMS) deviation of less than 1.9 A with respect to the crystallographic structure. The RMS atomic fluctuations of the residues surrounding the selectivity filter on the extracellular side of the channel are significantly lower than those on the intracellular side. The motion of the residues with aromatic side chains surrounding the selectivity filter (Trp(67), Trp(68), Tyr(78), and Tyr(82)) is anisotropic with the smallest RMS fluctuations in the direction parallel to the membrane plane. A concerted dynamic transition of the three K(+) ions in the pore is observed, during which the K(+) ion located initially in the cavity moves into the narrow part of the selectivity filter, while the other two K(+) ions move toward the extracellular side. A single water molecule is stabilized between each pair of ions during the transition, suggesting that each K(+) cation translocating through the narrow pore is accompanied by exactly one water molecule, in accord with streaming potential measurements (, Biophys. J. 55:367-371). The displacement of the ions is coupled with the structural fluctuations of Val(76) and Gly(77), in the selectivity filter, as well as the side chains of Glu(71), Asp(80), and Arg(89), near the extracellular side. Thus the mechanical response of the channel structure at distances as large as 10-20 A from the ions in the selectivity filter appears to play an important role in the concerted transition.  相似文献   

12.
We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.  相似文献   

13.
A distinctive feature of prokaryotic Na+-channels is the presence of four glutamate residues in their selectivity filter. In this study, how the structure of the selectivity filter, and the free-energy profile of permeating Na+ ions are altered by the protonation state of Glu177 are analyzed. It was found that protonation of a single glutamate residue was enough to modify the conformation of the selectivity filter and its conduction properties. Molecular dynamics simulations revealed that Glu177 residues may adopt two conformations, with the side chain directed toward the extracellular entrance of the channel or the intracellular cavity. The likelihood of the inwardly directed arrangement increases when Glu177 residues are protonated. The presence of one glutamate residue with its chain directed toward the intracellular cavity increases the energy barrier for translocation of Na+ ions. These higher-energy barriers preclude Na+ ions to permeate the selectivity filter of prokaryotic Na+-channels when one or more Glu177 residues are protonated.  相似文献   

14.
A distinctive feature of prokaryotic Na+-channels is the presence of four glutamate residues in their selectivity filter. In this study, how the structure of the selectivity filter, and the free-energy profile of permeating Na+ ions are altered by the protonation state of Glu177 are analyzed. It was found that protonation of a single glutamate residue was enough to modify the conformation of the selectivity filter and its conduction properties. Molecular dynamics simulations revealed that Glu177 residues may adopt two conformations, with the side chain directed toward the extracellular entrance of the channel or the intracellular cavity. The likelihood of the inwardly directed arrangement increases when Glu177 residues are protonated. The presence of one glutamate residue with its chain directed toward the intracellular cavity increases the energy barrier for translocation of Na+ ions. These higher-energy barriers preclude Na+ ions to permeate the selectivity filter of prokaryotic Na+-channels when one or more Glu177 residues are protonated.  相似文献   

15.
By combining a Fabry–Perot (FP) cavity with a slot cavity, a compact filter structure is proposed. The peak resonance wavelength is determined by applying the FP resonance condition of the FP cavity. The relationship between filtering wavelength and cavity parameters is investigated. The results show that the filtering wavelength can be manipulated by changing the nanocavities' parameters. By using the finite difference time domain method, the theoretical predictions are confirmed. An intersection structure for nanoplasmonic waveguides is proposed and designed by utilizing two perpendicular filters. In addition to having compact dimensions, the proposed arrangement provides higher throughput and low cross talk. The proposed structure can be useful for designing compact integrated nanoplasmonic circuits.  相似文献   

16.
In this study, we propose a plasmonic free-space filter with dual resonance wavelength by using an asymmetric T-shaped array. The structure under the T-shaped structure forms two metal/insulator/metal cavities with different cavity length. Each cavity supports a specific resonance wavelength. A notch filter for second harmonic generation Nd:YAG laser is also proposed. The filter offers two resonance dips and low sideband. In addition, the filter properties are based on the localized surface plasmon. Therefore, the angle tolerance is extremely high. This makes the proposed structure easy to align. The proposed structure can be used in dual wavelength biosensing detection and dual wavelength thermal emission applications.  相似文献   

17.
Hofer  Rudolf  Salvenmoser  Willi  Schiemer  Fritz 《Zoomorphology》2003,122(3):113-118
A unique gill structure, apparently associated with filter feeding on phytoplankton and suspended microdetritus, has been found in Amblypharyngodon melettinus, an abundant small Cyprinidae of Sri Lanka. The gill lamellae, the site of gas exchange, are bordered by a double row of fine appendices which are spread over the interlamellar gaps during daytime, but folded up at night. A respiratory function of the appendices can be excluded. The changing position of appendices correlates with the diurnal pattern of feeding (day) and swimming (night). The mechanism for movement of the appendices consists of hinge-like joints formed from the basement membranes of pavement cells, driven by variation in lamellar blood pressure. Food collection is based on both an efficient hydrosol filter produced by dense populations of clavate mucous cells of the buccopharyngeal epithelia and the lamellar appendices which cause a slower and more turbulent water current in the buccopharyngeal cavity. This may ensure the proper contact of food particles with the sticky mucous surface before they leave the buccopharyngeal cavity. The uniqueness of this structure is that the filter can be switched off during periodically occurring periods of high oxygen demand (high swimming activity at night) probably benefiting the process of respiration.  相似文献   

18.
N N Butorina 《Ontogenez》1991,22(3):304-307
The number of spleen colonies formed after intraperitoneal injection of bone marrow cells increases approximately 100-fold in mice with inflammation induced by nitrocellulose filters implanted into the intraperitoneal cavity. By transplanting these filters together with cells grown on them into intact animals and replacing them with clean filters we have demonstrated that this effect is associated with inflammation focus in the peritoneal cavity rather than with CFU-S proliferation of the filter surface.  相似文献   

19.
Binding of argiotoxin in the closed state of Ca(2+)-permeable AMPA receptor channels was studied using electrophysiological and molecular modeling approaches. Experimental study unambiguously revealed that argiotoxin is trapped in the closed AMPA receptor channels after agonist dissociation. Docking of the argiotoxin to the channel model based on recently published X-ray structure demonstrated that the drug can be effectively accommodated in the cavity of the closed channel only if the terminal moiety of the molecule penetrates in the narrow portion of the pore below the selectivity filter. Combining these results, we conclude that the selectivity filter of the AMPA receptor channels is not sterically occluded in the closed state.  相似文献   

20.
Patch clamp experiments on single MaxiK channels expressed in HEK293 cells were performed with a high temporal resolution (50-kHz filter) in symmetrical solutions with 50, 150, or 400 mM KCl and 2.5 mM CaCl(2) and 2.5 mM MgCl(2). At membrane potentials >+100 mV, the single-channel current showed a negative slope resistance, concomitantly with a flickery block, which was not influenced by Ca(2+) or Mg(2+). The analysis of the amplitude histograms by beta distributions revealed that current in this voltage range was reduced by two effects: rate limitation at the cytosolic side of the pore and gating with rate constants 10-20-fold higher than the cutoff frequency of the filter (i.e., dwell times in the microsecond range). The data were analyzed in terms of a model that postulates a coupling between both effects; if the voltage over the selectivity filter withdraws ions from the cavity at a higher rate than that of refilling from the cytosol, the selectivity filter becomes instable because of ion depletion, and current is interrupted by the resulting flickering. The fit of the IV curves revealed a characteristic voltage of 35 mV. In contrast, the voltage dependence of the gating factor R, i.e., the ratio between true and apparent single-channel current, could be fitted by exponentials with a characteristic voltage of 60 mV, suggesting that only part of the transmembrane potential is felt by the flux through the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号