首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of β-aminoacyl containing thiazolidine derivatives was synthesized and evaluated for their ability to inhibit DPP-IV. Several thiazolidine derivatives with an acid moiety were found to be potent DPP-IV inhibitors. Among them, compound 2da is the most active in this series with an IC50 value of 1 nM, and it showed excellent selectivity over DPP-IV related enzymes including DPP-2, DPP-8, and DPP-9. Compound 2da is chemically and metabolically stable, and showed no CYP inhibition, hERG binding or cytotoxicity. Compound 2db, an ester prodrug of 2da, showed good in vivo DPP-IV inhibition after oral administration in rat and dog models.  相似文献   

2.
A series of highly potent and selective inhibitors of DPP-4 was optimized for ADMET properties. The effort resulted in the discovery of inhibitor 1g, that exhibits excellent efficacy in an oral glucose tolerance test and an attractive pharmacokinetic profile.  相似文献   

3.
A novel class of potent PI3Kδ inhibitors with >1000-fold selectivity against other class I PI3K isoforms is described. Optimization of the substituents on a triazole aminopyrazine scaffold, emerging from an in-house PI3Kα program, turned moderately selective PI3Kδ compounds into highly potent and selective PI3Kδ inhibitors. These efforts resulted in a series of aminopyrazines with PI3Kδ IC50 ? 1 nM in the enzyme assay, some of the most selective PI3Kδ inhibitors published to date, with a cell potency in a JeKo-cell assay of 20–120 nM.  相似文献   

4.
A series of novel [1,2,3]-triazolopiperidine derivatives 5a-5y were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes, most of the compounds exhibited excellent in vitro potency (IC50 <50 nM) against DPP-4. Among these, compound 5d with potent in vitro activity against DPP-4 and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in ICR mice. On the base of these properties, compound 5d was selected as a potential new candidate for the treatment of type 2 diabetes.  相似文献   

5.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried out to explore the binding of 73 inhibitors to dipeptidyl peptidase IV (DPP-IV), and to construct highly predictive 3D-QSAR models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The negative logarithm of IC50 (pIC50) was used as the biological activity in the 3D-QSAR study. The CoMFA model was developed by steric and electrostatic field methods, and leave-one-out cross-validated partial least squares analysis yielded a cross-validated value (rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} ) of 0.759. Three CoMSIA models developed by different combinations of steric, electrostatic, hydrophobic and hydrogen-bond fields yielded significant rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} values of 0.750, 0.708 and 0.694, respectively. The CoMFA and CoMSIA models were validated by a structurally diversified test set of 18 compounds. All of the test compounds were predicted accurately using these models. The mean and standard deviation of prediction errors were within 0.33 and 0.26 for all models. Analysis of CoMFA and CoMSIA contour maps helped identify the structural requirements of inhibitors, with implications for the design of the next generation of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

6.
A high-throughput screening (HTS) campaign identified a class of heteroaryl piperazines with excellent baseline affinity and selectivity for phosphoinositide 3-kinase δ (PI3Kδ) over closely related isoforms. Rapid evaluation and optimization of structure-activity relationships (SAR) for this class, leveraging the modular nature of this scaffold, facilitated development of this hit class into a series of potent and selective inhibitors of PI3Kδ. This effort culminated in the identification of 29, which displayed excellent potency in enzyme and cell-based assays, as well as favorable pharmacokinetic and off-target profiles.  相似文献   

7.
The identification of highly selective small molecule di-substituted pyridinyl aminohydantoins as β-secretase inhibitors is reported. The more potent and selective analogs demonstrate low nanomolar potency for the BACE1 enzyme as measured in a FRET assay, and exhibit comparable activity in a cell-based (ELISA) assay. In addition, these pyridine-aminohydantoins are highly selectivity (>500×) against the other structurally related aspartyl proteases BACE2, cathepsin D, pepsin and renin.Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on the previously reported aminohydantoin 3a. We have taken advantage of the amino acid difference between the BACE1 and BACE2 at the S2′ pocket (BACE1 Pro70 changed to BACE2 Lys86) to build ligands with >500-fold selectivity against BACE2. The addition of large substituents on the targeted ligand at the vicinity of this aberration has generated a steric conflict between the ligand and these two proteins, thus impacting the ligand’s affinity and selectivity. These ligands have also shown an exceptional selectivity against cathepsin D (>5000-fold) as well as the other aspartyl proteases mentioned. One of the more potent compounds (S)-39 displayed an IC50 value for BACE1 of 10 nM, and exhibited cellular activity with an EC50 value of 130 nM in the ELISA assay.  相似文献   

8.
Selective PI3Kδ inhibitors have recently been hypothesized to be appropriate immunosuppressive agents for the treatment of immunological disorders such as rheumatoid arthritis. However, few reports have highlighted molecules that are highly selective for PI3Kδ over the other PI3K isoforms. In this letter, isoform and kinome selective PI3Kδ inhibitors are presented. The Structural Activity Relationship leading to such molecules is outlined.  相似文献   

9.
Novel dipeptidyl peptidase IV (DPP-IV) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on α-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Representative compounds showed non-competitive inhibition of DPP-IV and 28a exhibited 10-fold selectivity for DPP-IV over DPP-8. Compound 28a is the first non-competitive, selective DPP-IV inhibitor.  相似文献   

10.
Regulation of NF-κB activation through the inhibition of IKKβ has been identified as a promising target for the treatment of inflammatory and autoimmune disease such as rheumatoid arthritis. In order to develop novel IKKβ inhibitors, we performed high throughput screening toward around 8000 library compounds, and identified a hit compound containing rhodanine moiety. We modified the structure of hit compound to obtain potent and selective IKKβ inhibitors. Throughout hit-to-lead studies, we have discovered optimized compounds which possess blocking effect toward NF-κB activation and TNFα production in cell as well as inhibition activity against IKKβ. Among them, compound 3q showed the potent inhibitory activity against IKKβ, and excellent selectivity over other kinases such as p38α, p38β, JNK1, JNK2, and JNK3 as well as IKKα.  相似文献   

11.
Previous structure based optimization in our laboratories led to the identification of a novel, high-affinity cyclic sulfone hydroxyethylamine-derived inhibitor such as 1 that lowers CNS-derived Aβ following oral administration to transgenic APP51/16 mice. Herein we report SAR development in the S3 and S2′ subsites of BACE1 for cyclic sulfoxide hydroxyethyl amine inhibitors, the synthetic approaches employed in this effort, and in vivo data for optimized compound such as 11d.  相似文献   

12.
As an extension of research, we have investigated modification of left-hand side (LHS) of biphenyl analogues containing an acylsulfonamide moiety in the development of potent and selective human β3-adrenergic receptor (AR) agonists. Result of structure–activity relationships (SAR) and cassette-dosing evaluation in dogs showed that the hydroxynorephedrine analogue 16 had an excellent balance of in vitro and in vivo potency with pharmacokinetic profiles. In addition, to facilitate structure-based drug design (SBDD), we also have performed a docking study of biphenyl analogues based on the X-ray structure of the β2-adrenergic receptor.  相似文献   

13.
The design, synthesis and biological evaluation of a series of azabenzimidazole derivatives as TBK1/IKKε kinase inhibitors are described. Starting from a lead compound 1a, iterative design and SAR exploitation of the scaffold led to analogues with nM enzyme potencies against TBK1/IKKε. These compounds also exhibited excellent cellular activity against TBK1. Further structure-based design to improve selectivity over CDK2 and Aurora B resulted in compounds such as 5b-e. These probe compounds will facilitate study of the complex cancer biology of TBK1 and IKKε.  相似文献   

14.
Bisindole analogs 117 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50 = 1.62 ± 0.04 μM), 6 (IC50 = 1.86 ± 0.05 μM), 10 (IC50 = 2.80 ± 0.29 μM), 9 (IC50 = 3.10 ± 0.28 μM), 14 (IC50 = 4.30 ± 0.08 μM), 2 (IC50 = 18.40 ± 0.09 μM), 19 (IC50 = 19.90 ± 1.05 μM), 4 (IC50 = 20.90 ± 0.62 μM), 7 (IC50 = 21.50 ± 0.77 μM), and 3 (IC50 = 22.30 ± 0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50 = 48.40 ± 1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors.  相似文献   

15.
The proteolytic enzyme β-secretase (BACE1) plays a central role in the synthesis of the pathogenic β-amyloid in Alzheimer’s disease. Recently, we reported small molecule acylguanidines as potent BACE1 inhibitors. However, many of these acylguanidines have a high polar surface area (e.g. as measured by the topological polar surface area or TPSA), which is unfavorable for crossing the blood–brain barrier. Herein, we describe the identification of the 2-aminopyridine moiety as a bioisosteric replacement of the acylguanidine moiety, which resulted in inhibitors with lower TPSA values and superior brain penetration. X-ray crystallographic studies indicated that the 2-aminopyridine moiety interacts directly with the catalytic aspartic acids Asp32 and Asp228 via a hydrogen-bonding network.  相似文献   

16.
Small molecule isoindoline and tetrahydroisoquinoline derivatives have been identified as selective agonists of human peroxisome proliferator-activated receptor δ (PPARδ. Compound 18 demonstrated efficacy in a biomarker for increased fatty acid oxidation, with upregulation of pyruvate dehydrogenase kinase, isozyme 4 (PDK4) in human primary myotubes.  相似文献   

17.
A novel series of 2-aminothiazole-oxazoles was designed and synthesized as part of efforts to develop potent phosphoinositide 3-kinase γ (PI3Kγ) inhibitors. The modification of a high-throughput screening hit, compound 1, resulted in the identification of compounds 10 and 15, which displayed potent inhibitory activities in enzyme-based and cell-based assays.  相似文献   

18.
A series of 6-chloro-3-oxindole derivatives 125 were synthesized in high yields by the reaction of 6-chlorooxindole with different aromatic aldehydes in the presence of piperidine. All the synthesized compounds were isolated with E configuration. The structures were confirmed using spectroscopic techniques, including 1H NMR and EIMS. These compounds showed varying degree of yeast α-glucosidase inhibition and seven were found as potent inhibitors of the enzyme. Compounds 2, 3, 4, 5, 6, 23, and 25 exhibited IC50 values 2.71 ± 0.007, 11.41 ± 0.005, 37.93 ± 0.002, 15.19 ± 0.004, 24.71 ± 0.007, 17.33 ± 0.001, and 14.2 ± 0.002 μM, respectively, as compared to standard acarbose (IC50, 38.25 ± 0.12 μM). Docking studies helped to find interactions between the enzyme and the active compounds. As a result of this study, oxindoles have been discovered as a new class of α-glucosidase inhibitors which have not been reported earlier.  相似文献   

19.
The synthesis and structure-activity relationships (SAR) of p38α MAP kinase inhibitors based on a 5-amino-pyrazole scaffold are described. These studies led to the identification of compound 2j as a potent and selective inhibitor of p38α MAP kinase with excellent cellular potency toward the inhibition of TNFα production. Compound 2j was highly efficacious in vivo in inhibiting TNFα production in an acute murine model of TNFα production. X-ray co-crystallography of a 5-amino-pyrazole analog 2f bound to unphosphorylated p38α is also disclosed.  相似文献   

20.
A new class of p38α inhibitors based on a biaryl-triazolopyridine scaffold was investigated. X-ray crystallographic data of the initial lead compound cocrystallised with p38α was crucial in order to uncover a unique binding mode of the inhibitor to the hinge region via a pair of water molecules. Synthesis and SAR was directed towards the improvement of binding affinity, as well as ADME properties for this new class of p38α inhibitors and ultimately afforded compounds showing good in vivo efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号