首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β.

Methods

BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests.

Results

Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition.

Conclusion

Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.  相似文献   

2.
3.

Background

Since image based diagnostic tools fail to detect early metastasis in head and neck squamous cell carcinoma (HNSCC) it is crucial to develop minimal invasive diagnostic methods. A promising approach is to identify and characterize circulating tumor cells (CTC) in the peripheral blood of HNSCC patients. In this pilot study, we assessed which non-hematopoietic cell types are identifiable and whether their numbers differ in pre- and postoperative blood samples.

Methods

20 ml citrated peripheral blood was taken from 10 HNSCC patients before and after curative resection. CTC were enriched using density gradient centrifugation. CTC presence was verified by multi-immunofluorescence staining against cytokeratin (CK; epithelial), N-cadherin (mesenchymal); CD133 (stem-cell), CD45 (hematopoietic) and DAPI (nucleus). Individual cell type profiles were analyzed.

Results

We were able to detect cells with epithelial properties like CK+/N-cadherin−/CD45− and CK+/CD133−/CD45− as well as cells with mesenchymal features such as N-cadherin+/CK−/CD45− and cells with both characteristics like N-cadherin+/CK+/CD45−. We also observed cells showing stem cell-like features like CD133+/CK−/CD45− and cells with both epithelial and stem cell-like features such as CD133+/CK+/CD45−. The number of CK positive cells (p = 0.002), N-cadherin positive cells (p = 0.002) and CD133 positive cells (p = 0.01) decreased significantly after resection. Kaplan-Meier test showed that the survival was significantly shorter when N-cadherin+ cells were present after resection (p = 0.04; 474 vs. 235 days; [HR] = 3.1).

Conclusions

This is - to the best of our knowledge- the first pilot study identifying different CTC populations in peripheral blood of HNSCC patients and showing that these individual cell type profiles may have distinct clinical implications.  相似文献   

4.
5.

Background

While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.

Methods

Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.

Results

Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.

Conclusion

Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine in vitro; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.  相似文献   

6.

Background

Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.

Methods

A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.

Results

The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.

Conclusion

Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon.  相似文献   

7.

Background

IL-2 has been reported to be critical for peripheral Treg survival in mouse models. Here, we examined Treg maintenance in a series of paediatric liver transplant recipients who received basiliximab, a therapeutic anti-CD25 monoclonal antibody.

Methodology/Principal Findings

FoxP3+ CD4 T cells were analyzed by flow cytometry before liver grafting and more than 9 months later. We found that in vivo CD25 blockade did not lead to Treg depletion: the proportion of FoxP3+ cells among CD4 T cells and the level of FoxP3 expression were both unchanged. IL-2Rβ expression was enhanced in FoxP3+ cells both before and after basiliximab treatment, while the level of IL-2Rγ expression was similar in Tregs and non-Tregs. No significant change in the weak or absent expression of IL-7Rα and IL-15Rα expression on FoxP3+ cells was observed. Although the proportion of FoxP3+ cells among CD4 T cells did not vary, food allergies occurred more rapidly after liver grafting in patients who received basiliximab, raising questions as to Treg functionality in vivo in the absence of functional CD25.

Conclusions

CD25 appears non essential for human Treg peripheral maintenance in vivo. However, our results raise questions as to Treg functionality after therapeutic CD25 targeting.  相似文献   

8.
9.

Background

Distinct subpopulations of neoplastic cells within tumors, including hepatocellular carcinoma (HCC), display pronounced ability to initiate new tumors and induce metastasis. Recent evidence suggests that signals from transforming growth factor beta (TGF-β) may increase the survival of these so called tumor initiating cells leading to poor HCC prognosis. However, how TGF-β establishes and modifies the key features of these cell subpopulations is not fully understood.

Results

In the present report we describe the differential DNA methylome of CD133-negative and CD133-expressing liver cancer cells. Next, we show that TGF-β is able to increase the proportion of CD133+ cells in liver cancer cell lines in a way that is stable and persistent across cell division. This process is associated with stable genome-wide changes in DNA methylation that persist through cell division. Differential methylation in response to TGF-β is under-represented at promoter CpG islands and enriched at gene bodies, including a locus in the body of the de novo DNA methyl-transferase DNMT3B gene. Moreover, phenotypic changes induced by TGF-β, including the induction of CD133, are impaired by siRNA silencing of de novo DNA methyl-transferases.

Conclusions

Our study reveals a self-perpetuating crosstalk between TGF-β signaling and the DNA methylation machinery, which can be relevant in the establishment of cellular phenotypes. This is the first indication of the ability of TGF-β to induce genome-wide changes in DNA methylation, resulting in a stable change in the proportion of liver cancer cell subpopulations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-435) contains supplementary material, which is available to authorized users.  相似文献   

10.

Purpose

The tetraspanin CD151 acts as a promoter of metastasis and invasion in several tumors. However, the role of CD151 in human gastric cancer (HGC) remains unclear.

Methods

Twenty HGC specimens and matched nontumor samples, human gastric epithelial cells (HGEC), and four gastric cancer cell lines were used to analyze CD151 expression. Short hairpin RNA-mediated downregulation of CD151 expression in HGC cells was performed to examine the role of CD151 in the proliferation and metastasis/invasion of HGC cells in vivo and in vitro. The relationship of CD151 with integrin α3 in HGC cells was investigated by silencing integrin α3 followed by co-immunoprecipitation and immunofluorescence staining. Finally, the prognostic value of CD151 and integrin α3 was evaluated by immunohistochemistry in tissue microarrays of 76 HGC patients.

Results

CD151 was expressed at higher levels in HGC tissues and HGC cells than in nontumor tissues and HGEC cells. Down-regulation of CD151 by vshRNA-CD151 impaired metastasis and invasion of HGC-27 cells, but did not affect cell proliferation. CD151 formed a complex with integrin α3 in HGC cells. CD151-cDNA transfection rescued the metastatic potential and invasiveness of HGC-27-vshCD151 cells, but not those of HGC-27-vshintegrin α3 cells in vitro. Clinically, CD151 overexpression was significantly correlated with high TNM stage, depth of invasion and positive lymph node involvement (p<0.05), and high levels of integrin α3 were associated with large tumor size, high TNM stage, depth of invasion and lymph node involvement (p<0.05). Importantly, the postoperative 5-year overall survival of patients with CD151low and/or integrin α3low was higher than that of patients with CD151high and/or integrin α3high.

Conclusion

CD151 is positively associated with the invasiveness of HGC, and CD151 or the combination of CD151 and integrin α3 is a novel marker for predicting the prognosis of HGC patients and may be potential therapeutic targets.  相似文献   

11.

Background

In recent years, many immunoregulatory functions have been ascribed to soluble HLA-G (sHLA-G). Since chemotaxis is crucial for an efficient immune response, we have investigated for the first time the effects of sHLA-G on chemokine receptor expression and function in different human T cell populations.

Methodology/Principal Findings

T cell populations isolated from peripheral blood were stimulated in the presence or absence of sHLA-G. Chemokine receptors expression was evaluated by flow cytometry. sHLA-G downregulated expression of i) CCR2, CXCR3 and CXCR5 in CD4+ T cells, ii) CXCR3 in CD8+ T cells, iii) CXCR3 in Th1 clones iv) CXCR3 in TCR Vδ2γ9 T cells, and upregulated CXCR4 expression in TCR Vδ2γ9 T cells. sHLA-G inhibited in vitro chemotaxis of i) CD4+ T cells towards CCL2, CCL8, CXCL10 and CXCL11, ii) CD8+ T cells towards CXCL10 and CXCL11, iii) Th1 clones towards CXCL10, and iv) TCR Vδ2γ9 T cells towards CXCL10 and CXCL11. Downregulation of CXCR3 expression on CD4+ T cells by sHLA-G was partially reverted by adding a blocking antibody against ILT2/CD85j, a receptor for sHLA-G, suggesting that sHLA-G downregulated chemokine receptor expression mainly through the interaction with ILT2/CD85j. Follicular helper T cells (TFH) were isolated from human tonsils and stimulated as described above. sHLA-G impaired CXCR5 expression in TFH and chemotaxis of the latter cells towards CXCL13. Moreover, sHLA-G expression was detected in tonsils by immunohistochemistry, suggesting a role of sHLA-G in local control of TFH cell chemotaxis. Intracellular pathways were investigated by Western Blot analysis on total extracts from CD4+ T cells. Phosphorylation of Stat5, p70 s6k, β-arrestin and SHP2 was modulated by sHLA-G treatment.

Conclusions/Significance

Our data demonstrated that sHLA-G impairs expression and functionality of different chemokine receptors in T cells. These findings delineate a novel mechanism whereby sHLA-G modulates T cell recruitment in physiological and pathological conditions.  相似文献   

12.

Objective

Dysregulated repair following epithelial injury is a key forerunner of disease in many organs, and the acquisition of a mesenchymal phenotype by the injured epithelial cells (epithelial to mesenchymal transition, EMT) may serve as a source of fibrosis. The macrolide antibiotic azithromycin and the DNA synthesis inhibitor mycophenolate are in clinical use but their mechanism of action remains unknown in post-transplant bronchiolitis obliterans syndrome (BOS). Here we determined if regional variation in the EMT response to TGFβ1 underlies the bronchiolocentric fibrosis leading to BOS and whether EMT could be inhibited by azithromycin or mycophenolate.

Methods/Results

We found that small and large airway epithelial cells from stable lung transplant patients underwent EMT when stimulated with TGFβ1, however mesenchymal protein expression was higher and loss of epithelial protein expression more complete in small airway epithelial cells. This regional difference was not mediated by changes in expression of the TGFβRII or Smad3 activation. Azithromycin potentially inhibited EMT in both small and large airway epithelial cells by inhibiting Smad3 expression, but not activation.

Conclusion

Collectively, these observations provide a biologic basis for a previously unexplained but widely observed clinical phenomena, and a platform for the development of new approaches to fibrotic diseases.  相似文献   

13.

Purpose

To characterize the effects of benzalkonium chloride (BAK) in THP-1 differentiated cells in vitro.

Methods

Macrophages were obtained after differentiation of THP-1 cells, a human monocytic leukemia cell line. Macrophages were exposed for 24 h to 33 nM (10−5%) benzalkonium chloride (BAK), 10 nM dinitrochlorobenzene (DNCB), 100 ng/mL lipopolysaccharide (LPS), 5 ng/mL tumor necrosis factor alpha (TNF-α) or phosphate buffered saline (PBS) as controls. The expression of CD11b, CD11c, CD33 and CD54 was evaluated using immunohistochemistry and flow cytometry (FCM). Phagocytosis function was analyzed using carboxylate-modified fluorescent microspheres and quantified by FCM. Migration was evaluated in cocultures with conjunctival epithelial cells. Cytokine production was detected and quantified in culture supernatants using a human cytokine array.

Results

Stimulation of THP-1-derived macrophages with a low concentration of BAK increased CD11b and CD11c expression and decreased CD33. Macrophages exposed to BAK, LPS and TNF-α had increased phagocytosis. In contrast to LPS, BAK and TNF-α increased macrophage migration. Cytokines in supernatants of macrophages exposed to BAK revealed an increased release of CCL1, CCL4/MIP-1β, TNF-α, soluble CD54/ICAM-1 and IL-1β.

Conclusion

In vitro, BAK has a direct stimulating effect on macrophages, increasing phagocytosis, cytokine release, migration and expression of CD11b and CD11c. Long-term exposure to low concentrations of BAK should be considered as a stimulating factor responsible for inflammation through macrophage activation.  相似文献   

14.

Background

The deficit of pancreatic islet β cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D.

Methodology/Principal Findings

Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4+CD62L+ Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet β-cell regeneration to increase β-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4+CD62L+ Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets.

Conclusions/Significance

These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes, providing a novel strategy for the treatment of type 1 diabetes as well as other autoimmune diseases.  相似文献   

15.

Background

Double negative CD3+48 TCRαβ splenic cells (DNCD3) can suppress the immune responses to allo and xenografts, infectious agents, tumors, and some autoimmune disorders. However, little is known about their role in autoimmune diabetes, a disease characterized by the reduction of insulin production subsequent to destruction of pancreatic β-cells by a polyclonal population of self-reactive T-cells. Herein, we analyzed the function and phenotype of DNCD3 splenic cells in young NOD mice predisposed to several autoimmune disorders among which, the human-like autoimmune diabetes.

Methodology/Principal Findings

DNCD3 splenic cells from young NOD mice (1) provided long-lasting protection against diabetes transfer in NOD/Scid immunodeficient mice, (2) proliferated and differentiated in the spleen and pancreas of NOD/Scid mice and pre-diabetic NOD mice into IL-10-secreting TR-1 like cells in a Th2-like environment, and (3) their anti-diabetogenic phenotype is CD3+(CD4CD8)CD28+CD69+CD25low Foxp3 iCTLA-4TCRαβ+ with a predominant Vβ13 gene usage.

Conclusions/Significance

These findings delineate a new T regulatory component in autoimmune diabetes apart from that of NKT and CD4+CD25high Foxp3+T-regulatory cells. DNCD3 splenic cells could be potentially manipulated towards the development of autologous cell therapies in autoimmune diabetes.  相似文献   

16.

Background

Anaplastic thyroid cancer (ATC) is one of the most lethal human malignancies. Its rapid onset and resistance to conventional therapeutics contribute to a mean survival of six months after diagnosis and make the identification of thyroid-cancer-initiating cells increasingly important.

Methodology/Principal Findings

In prior studies of ATC cell lines, CD133+ cells exhibited stem-cell-like features such as high proliferation, self-renewal and colony-forming ability in vitro. Here we show that transplantation of CD133+ cells, but not CD133 cells, into immunodeficient NOD/SCID mice is sufficient to induce growth of tumors in vivo. We also describe how the proportion of ATC cells that are CD133+ increases dramatically over three months of culture, from 7% to more than 80% of the total. This CD133+ cell pool can be further separated by flow cytometry into two distinct populations: CD133+/high and CD133+/low. Although both subsets are capable of long-term tumorigenesis, the rapidly proliferating CD133+/high cells are by far the most efficient. They also express high levels of the stem cell antigen Oct4 and the receptor for thyroid stimulating hormone, TSHR. Treating ATC cells with TSH causes a three-fold increase in the numbers of CD133+ cells and elicits a dose-dependent up-regulation of the expression of TSHR and Oct4 in these cells. More importantly, immunohistochemical analysis of tissue specimens from ATC patients indicates that CD133 is highly expressed on tumor cells but not on neighboring normal thyroid cells.

Conclusions/Significance

To our knowledge, this is the first report indicating that CD133+ ATC cells are solely responsible for tumor growth in immunodeficient mice. Our data also give a unique insight into the regulation of CD133 by TSH. These highly tumorigenic CD133+ cells and the activated TSH signaling pathway may be useful targets for future ATC therapies.  相似文献   

17.

Background

The "Th2 hypothesis for asthma" asserts that an increased ratio of Th2:Th1 cytokine production plays an important pathogenic role in asthma. Although widely embraced, the hypothesis has been challenged by various empirical observations and has been described as overly simplistic. We sought to establish whether CD3+CD28-mediated and antigen-independent accumulation of type 1 and type 2 T cells differs significantly between nonasthmatic and asthmatic populations.

Methods

An ex vivo system was used to characterize the regulation of IFN-γ-producing (type 1) and IL-13-producing (type 2) T cell accumulation in response to CD3+CD28 and IL-2 stimulation by flow cytometry.

Results

IL-13-producing T cells increased in greater numbers in response to antigen-independent stimulation in peripheral blood lymphocytes from female atopic asthmatic subjects compared with male asthmatics and both male and female atopic non-asthmatic subjects. IFN-γ+ T cells increased in greater numbers in response to either antigen-independent or CD3+CD28-mediated stimulation in peripheral blood lymphocytes from atopic asthmatic subjects compared to non-asthmatic subjects, regardless of gender.

Conclusions

We demonstrate that T cells from asthmatics are programmed for increased accumulation of both type 2 and type 1 T cells. Gender had a profound effect on the regulation of type 2 T cells, thus providing a mechanism for the higher frequency of adult asthma in females.  相似文献   

18.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

19.

Background

The lack of a suitable animal model to study viral and immunological mechanisms of human dengue disease has been a deterrent to dengue research.

Methodology/Principal Findings

We sought to establish an animal model for dengue virus (DENV) infection and immunity using non-obese diabetic/severe combined immunodeficiency interleukin-2 receptor γ-chain knockout (NOD-scid IL2rγnull) mice engrafted with human hematopoietic stem cells. Human CD45+ cells in the bone marrow of engrafted mice were susceptible to in vitro infection using low passage clinical and established strains of DENV. Engrafted mice were infected with DENV type 2 by different routes and at multiple time points post infection, we detected DENV antigen and RNA in the sera, bone marrow, spleen and liver of infected engrafted mice. Anti-dengue IgM antibodies directed against the envelope protein of DENV peaked in the sera of mice at 1 week post infection. Human T cells that developed following engraftment of HLA-A2 transgenic NOD-scid IL2rγnull mice with HLA-A2+ human cord blood hematopoietic stem cells, were able to secrete IFN-γ, IL-2 and TNF-α in response to stimulation with three previously identified A2 restricted dengue peptides NS4b 2353(111–119), NS4b 2423(181–189), and NS4a 2148(56–64).

Conclusions/Significance

This is the first study to demonstrate infection of human cells and functional DENV-specific T cell responses in DENV-infected humanized mice. Overall, these mice should be a valuable tool to study the role of prior immunity on subsequent DENV infections.  相似文献   

20.

Background

An incomplete understanding of bone forming cells during wound healing and ectopic calcification has led to a search for circulating cells that may fulfill this function. Previously, we showed that monoosteophils, a novel lineage of calcifying/bone-forming cells generated by treatment of monocytes with the natural peptide LL-37, are candidates. In this study, we have analyzed their gene expression profile and bone repair function.

Methods and Findings

Human monoosteophils can be distinguished from monocytes, macrophages and osteoclasts by their unique up-regulation of integrin α3 and down-regulation of CD14 and CD16. Monoosteophils express high mRNA and protein levels of SPP1 (osteopontin), GPNMB (osteoactivin), CHI3L1 (cartilage glycoprotein-39), CHIT1 (Chitinase 1), MMP-7, CCL22 and MAPK13 (p38MAPKδ). Monocytes from wild type, but not MAPK13 KO mice are also capable of monoosteophil differentiation, suggesting that MAPK13 regulates this process. When human monoosteophils were implanted in a freshly drilled hole in mid-diaphyseal femurs of NOD/SCID mice, significant bone repair required only 14 days compared to at least 24 days in control treated injuries.

Conclusion

Human derived monoosteophils, characterized as CD45+α3+α3β+CD34CD14BAP (bone alkaline phosphatase) cells, can function in an animal model of bone injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号