共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mRNA-binding protein Ssd1 is a substrate for the Saccharomyces cerevisiae LATS/NDR orthologue Cbk1, which controls polarized growth, cell separation, and cell integrity. We discovered that most Ssd1 localizes diffusely within the cytoplasm, but some transiently accumulates at sites of polarized growth. Cbk1 inhibition and cellular stress cause Ssd1 to redistribute to mRNA processing bodies (P-bodies) and stress granules, which are known to repress translation. Ssd1 recruitment to P-bodies is independent of mRNA binding and is promoted by the removal of Cbk1 phosphorylation sites. SSD1 deletion severely impairs the asymmetric localization of the Ssd1-associated mRNA, SRL1. Expression of phosphomimetic Ssd1 promotes polarized localization of SRL1 mRNA, whereas phosphorylation-deficient Ssd1 causes constitutive localization of SRL1 mRNA to P-bodies and causes cellular lysis. These data support the model that Cbk1-mediated phosphorylation of Ssd1 promotes the cortical localization of Ssd1-mRNA complexes, whereas Cbk1 inhibition, cellular stress, and Ssd1 dephosphorylation promote Ssd1-mRNA interactions with P-bodies and stress granules, leading to translational repression. 相似文献
4.
The Unfolded Protein Response and Cell Fate Control 总被引:1,自引:0,他引:1
5.
6.
7.
小肠上皮具有快速更新的能力,是研究成体干细胞的理想系统.小肠上皮由绒毛和隐窝两部分组成,而位于小肠隐窝底部的小肠干细胞是其持续更新的源泉.近年来,以Lgr5为代表的小肠干细胞标记物的发现、Lgr5+小肠干细胞的分离培养和多种转基因小鼠模型的出现,极大地促进了对小肠干细胞自我更新和分化调控的研究,使得人们可以更加深入地认识小肠干细胞命运决定的分子机制.本文简要综述了近年来人们对Wnt,BMP,Notch和EGF等信号如何在小肠干细胞命运调控中发挥作用的认识. 相似文献
8.
9.
10.
11.
12.
13.
14.
Translational Regulation of Myelin Protein Synthesis by Steroids 总被引:1,自引:3,他引:1
15.
16.
《Cell cycle (Georgetown, Tex.)》2013,12(11):1143-1147
Current models of translational regulation are mostly focused on how translational factors engage a messenger mRNA to the ribosome to initiate translation. Since the majority of mRNAs in eukaryotes are translated in a cap-dependent manner, the mRNA 5’ cap-binding protein eIF4E was characterized as a key player responsible for the recruitment of mRNAs to the initiation complex. The availability of eIF4E is believed to be especially critical for translational activation of mRNAs with extensive secondary structures in their 5’UTRs, many of which code for labile regulatory proteins essential for cell growth or viability. Surprisingly, little attention is paid to the other side of translational control, e.g., to define mechanisms responsible for translational silencing and storage of the above messages. In this review, we discuss the possibility that eIF4E per se may not be sufficient to release mRNAs from translational block. We found that many growth- and stress-related mRNAs are associated with the translational repressor YB-1, which can compete with the eIF4E-driven translation initiation complex for binding to the capped 5’ mRNA terminus. Moreover, the cap-dependent repressor activity of YB-1 appears to be negatively regulated via Akt-mediated phosphorylation of the Ser-102 residue of YB-1. Taken together with recent evidence suggesting that translational activation of growth-related messages is a primary cellular response to activation of Ras-Erk and PI3K-Akt signaling pathways, our data suggest that differential expression of specific mRNA subsets is regulated by the PI3K-Akt pathway and achieved via coordinated activation of the components of translational machinery and inactivation of general translational repressors such as YB-1. 相似文献
17.
Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells
Anna Zekavati Asghar Nasir Amor Alcaraz Maceler Aldrovandi Phil Marsh John D. Norton John J. Murphy 《PloS one》2014,9(7)
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells. 相似文献
18.
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus. 相似文献
19.
A General RNA-Binding Protein Complex That Includes the
Cytoskeleton-associated Protein MAP 1A 总被引:2,自引:0,他引:2 下载免费PDF全文
Christopher DeFranco Marina E. Chicurel Huntington Potter 《Molecular biology of the cell》1998,9(7):1695-1708
Association of mRNA with the cytoskeleton represents a fundamental aspect of RNA physiology likely involved in mRNA transport, anchoring, translation, and turnover. We report the initial characterization of a protein complex that binds RNA in a sequence-independent but size-dependent manner in vitro. The complex includes a ~160-kDa protein that is bound directly to mRNA and that appears to be either identical or highly related to a ~1600-kDa protein that binds directly to mRNA in vivo. In addition, the microtubule-associated protein, MAP 1A, a cytoskeletal associated protein is a component of this complex. We suggest that the general attachment of mRNA to the cytoskeleton may be mediated, in part, through the formation of this ribonucleoprotein complex. 相似文献
20.