首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-O-α-d-Glucopyranosyl-l-ascorbic acid (AA-2G) laurate was synthesized from AA-2G and vinyl laurate with a protease from Bacillus subtilis in N,N-dimethylformamide (DMF) with low water content. Addition of water to DMF dramatically enhanced monoacyl AA-2G synthesis. Maximum synthetic activity was observed when 3% (v/v) water was added to the reaction medium. Under the optimal reaction conditions, 5-O-dodecanoyl-2-O-α-d-glucopyranosyl-l-ascorbic acid, 2-O-(6′-O-dodecanoyl-α-d-glucopyranosyl)-l-ascorbic acid, and 6-O-dodecanoyl-2-O-α-d-glucopyranosyl-l-ascorbic acid were synthesized in yields of 5.5%, 3.2%, and 20.4%, respectively.  相似文献   

2.
A glycosyltransferase, YjiC, from Bacillus licheniformis has been used for the modification of the commercially available isoflavonoids genistein, daidzein, biochanin A and formononetin. The in vitro glycosylation reaction, using UDP-α-D-glucose as a donor for the glucose moiety and aforementioned four acceptor molecules, showed the prominent glycosylation at 4′ and 7 hydroxyl groups, but not at the 5th hydroxyl group of the A-ring, resulting in the production of genistein 4′-O-β-D-glucoside, genistein 7-O-β-D-glucoside (genistin), genistein 4′,7-O-β-D-diglucoside, biochanin A-7-O-β-D-glucoside (sissotrin), daidzein 4′-O-β-D-glucoside, daidzein 7-O-β-D-glucoside (daidzin), daidzein 4′, 7-O-β-D-diglucoside, and formononetin 7-O-β-D-glucoside (ononin). The structures of all the products were elucidated using high performance liquid chromatography-photo diode array and high resolution quadrupole time-of-flight electrospray ionization mass spectrometry (HR QTOFESI/MS) analysis, and were compared with commercially available standard compounds. Significantly higher bioconversion rates of all four isoflavonoids was observed in both in vitro as well as in vivo bioconversion reactions. The in vivo fermentation of the isoflavonoids by applying engineered E. coli BL21(DE3)/ΔpgiΔzwfΔushA overexpressing phosphoglucomutase (pgm) and glucose 1-phosphate uridyltransferase (galU), along with YjiC, found more than 60% average conversion of 200 μM of supplemented isoflavonoids, without any additional UDP-α-D-glucose added in fermentation medium, which could be very beneficial to large scale industrial production of isoflavonoid glucosides.  相似文献   

3.
Natural compounds are regarded as a rich source for potential anti-inflammatory and anti-carcinogenic agents. Increasing evidence indicates that histone phosphorylation at Ser10 is a marker for cell cycle progression during the mitosis and the induction of immediate pro-inflammatory genes during the interphase. In the present study, we have screened our in-house natural compounds to find out new chemical inhibitor(s) of histone H3 phosphorylation at Ser10. As a result, we observed that α-amyrin, oleanolic acid, marliolide, and 4′-O-β-d-glucosyl-5-O-methylvisamminol decreased the levels of histone H3 phosphorylation at Ser10 and c-Jun. In particular, we observed that 4′-O-β-d-glucosyl-5-O-methylvisamminol suppressed the direct interaction of histone H3 with 14-3-3ε, inhibited the aurora B kinase activity and delayed the mitotic cell cycle progression. We reports 4′-O-β-d-glucosyl-5-O-methylvisamminol as the first epigenetic natural chemical inhibitor that can abrogates the mitotic cell cycle progression and immediate pro-inflammatory gene expressions via suppression of histone H3 phosphorylation at Ser10 and its interaction with 14-3-3ε.  相似文献   

4.
Five known isoflavones (daidzein, formononetin, genistein, 5-O-methylgenistein and biochanin A) have been isolated from the leaves and stems of Echinospartum horridum. A sixth compound has been characterised by chemical and spectroscopic methods as the new isoflavone, 5-O-methylbiochanin A.  相似文献   

5.
Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4′-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4′-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49 % identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC–MS and HPLC, which confirmed its specificity for genistein 4′-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.  相似文献   

6.
The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3′-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3′-O-glucuronide formation at 28 months declined by a similar degree (P≤.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.  相似文献   

7.
The structure of two new saponins, polyphyllins G and H, isolated from the tubers of Paris polyphylla have been elucidated as 3-O-{α-l-rhamnopyranosyl (1→3) [α-l-arabinofuranosyl (1→4)]-β-d-glucopyranosyl}-26-O-[β-d-glucopyranosyl] (25R)-22α-hydroxy-furost-5-en-3β, 26-diol and its 22-methoxy derivative respectively.  相似文献   

8.
Two new furostanol glycosides, trigofoenosides F and G, have been isolated as their methyl ethers from the methanolic extract of Trigonella foenum-graecum seeds (Leguminosae). The structures of the original glycosides have been determined as (25R)-furost-5-en-3β,22,26-triol, 3-O-α-l-rhamnopyranosyl (1 → 2)β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside and (25R)-furost-5en-3β,22,26-triol, 3-O-α-L-rhamnopyranosyl (1 → 2) [β-d-xylopyranosyl (1 → 4)]β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside, respectively.  相似文献   

9.
《Carbohydrate research》1988,172(1):11-25
Benzyl-3-O-benzyl-2-benzyloxycarbonylamino-6-O-[2-benzyloxycarbonyl-amino-2-deoxy-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)- β-d-glucopyranosyl]-2-deoxy-α-d-glucopyranoside was coupled with methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-α-d-manno-2-octulopyranosyl bromide)onate (13) to yield the α-glycosidically linked trisaccharide. After deacetylation and selective introduction of a second 7′,8′-O-tetraisopropyldisiloxane group, a further glycosidation reaction with 13 led regioselectively to the tetrasaccharide benzyl O-[methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-α-d-manno-2-octulopyranosyl)onate]-(2→4)-O-{methyl [3-deoxy-7,8-O-(tetraisopropyldisiloxane-1,3-diyl)-α-d-manno-2-octulopyranosyl]-onate}-(2→6)-O- [2-benzyloxycarbonylamino-2-deoxy-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-β-d-glucopyranosyl]- (1→6)-3-O-benzyl-2-benzyloxycarbonyl-amino-2-deoxy-α-d-glucopyranoside. A series of deblocking steps gave O-(3-deoxy-α-d-manno-2-octulopyranosylonic acid)-(2→4)-O-(3-deoxy-α-d-manno-2-octulopyranosylonic acid)- (2→6)-O-(2-amino-2-deoxy-β-d-glucopyranosyl)-(1→6)-2-amino-2-deoxy-d-glucopyranose which was identical with a tetrasaccharide that had been isolated by hydrazinolysis of the lipopolysaccharide from Salmonella minnesota R 595. Hence, synthetic proof is provided for the linkages in this part of the inner core region of lipopolysaccharides.  相似文献   

10.
Genistein, due to its recognized chemopreventive and antitumour potential, is a molecule of interest as a lead compound in drug design. Recently, we found that the novel genistein derivative, [7-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1?→?4)-(6-O-acetyl-hex-2-ene-α-D-erythro pyranosyl)genistein, named G21, induced aberrations in mitotic spindle formation. In the presented study, we investigated the properties of G21 relevant to its genotoxic activity. The inhibition of topoisomerase IIα activity was evaluated in decatenation assay and immunoband depletion assay, the covalent DNA-topoisomerase IIα complexes and histone ?H2AX were detected immunofluorescently. Genotoxic effects of the tested compounds were assessed in micronucleation assay. The presence of centromeres in the micronuclei and the multiplication of centrosomes were evaluated in fluorescence immunolabelled specimens. The inhibition of tubulin polymerization was measured spectrophotometrically. We found that both tested drugs were able to inhibit topoisomerase II activity; however, G21, in contrast to genistein, blocked this enzyme at the concentration far exceeding cytotoxic IC(50). We also found that both compounds caused micronucleation in DU 145 prostate cancer cells, but in contrast to genistein, G21 exhibited aneugenic activity, manifested by the presence of centromeres in micronuclei formed in cells treated with the drug. Aneugenic properties of G21 resulted from the inhibition of tubulin polymerization and centrosome disruption, not observed in the presence of genistein. The study supports and extends our previous observations that the mechanisms of cytotoxicity of genistein and its new glycosidic derivative-G21 are significantly different.  相似文献   

11.
A stable ascorbic acid derivative, 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G), exhibits vitamin C activity in vitro and in vivo after enzymatic hydrolysis to ascorbic acid. AA-2G has been approved by the Japanese Government as a quasi-drug principal ingredient in skin care and as a food additive. In order to achieve efficient action as an ascorbic acid source, a pro-vitamin C agent, on a variety of cells or tissues, we have synthesized a series of monoacyl AA-2G derivatives. Our previous studies indicate that a series of the derivatives is a readily available source of AA activity in vitro and in vivo, and suggested that intramolecular acyl migration of the derivatives might have occurred in a neutral aqueous solution. In this study, intramolecular acyl migration and enzymatic hydrolysis of a monoacyl AA-2G derivative, 6-O-dodecanoyl-2-O-α-d-glucopyranosyl-l-ascorbic acid (6-sDode-AA-2G), were investigated. 6-sDode-AA-2G underwent an intramolecular acyl migration to yield ca. 10% of an isomer in neutral aqueous solutions, and the acyl-migrated isomer was isolated and characterized as 5-O-dodecanoyl-2-O-α-d-glucopyranosyl-l-ascorbic acid (5-sDode-AA-2G). In some tissue homogenates from guinea pigs as well as in neutral aqueous solutions, 6-sDode-AA-2G underwent partial acyl migration to give 5-sDode-AA-2G. 6-sDode-AA-2G and the resulting 5-sDode-AA-2G were predominantly hydrolyzed with esterase to AA-2G and then with α-glucosidase to ascorbic acid in the tissue homogenates. The results will provide a further basis for its use as an ingredient in skin care, as an effective pharmacological agent and as a promising food additive.  相似文献   

12.
Molecular complexation of streptocid (sulfanylamide) with 3-O-??-L-rhamnopyranosyl-(1 ?? 2)-O-??-L-arabinopyranoside of hederagenin (??-hederin) and its 28-O-??-L-rhamnopyranosyl -(1 ?? 4)-O-??-D-glucopyranosyl-(1 ?? 6)-O-??-D-glucopyranosyl ester (hedera saponin C) has been studied with electrospray ionization mass spectrometry for the first time. It was established that ??-hederin forms a 1: 1 complex with streptocid. Hedera saponin C complexes with streptocid with the molar ratio 1: 1, 2: 1, and 2: 2 were more stable. Conclusions were drawn about the influence of the glycosides and streptocid structure on complexation.  相似文献   

13.
Seven flavonoids have been isolated from Pinus massoniana needles and identified as taxifolin and its 3′-O-β-D-glucopyranoside, (+)-catechin, naringenin-7-O-β-D-glucopyranoside and three new flavonoid glycosides, 6-C-methylaromadendrin 7-O-β-D-glucopyranoside, taxifolin 3′-O-β-D-(6″-O-phenylacetyl)-glucopyranoside and eriodictyol 3′-O-β-D-glucopyranoside.  相似文献   

14.
Potentilla anserina L. (Rosaceae) is known for its beneficial effects of prevention of pre-menstrual syndrome (PMS). For this reason P. anserina is processed into many food supplements and pharmaceutical preparations. Here we analyzed hydroalcoholic reference extracts and compared them with various extracts of different pharmacies using an integrative metabolomics platform comprising GC-MS and LC-MS analysis and software toolboxes for data alignment (MetMAX Beta 1.0) and multivariate statistical analysis (COVAIN 1.0). Multivariate statistics of the integrated GC-MS and LC-MS data showed strong differences between the different plant extract formulations. Different groups of compounds such as chlorogenic acid, kaempferol 3-O-rutinoside, acacetin 7-O-rutinoside, and genistein were reported for the first time in this species. The typical fragmentation pathway of the isoflavone genistein confirmed the identification of this active compound that was present with different abundances in all the extracts analyzed. As a result we have revealed that different extraction procedures from different vendors produce different chemical compositions, e.g. different genistein concentrations. Consequently, the treatment may have different effects. The integrative metabolomics platform provides the highest resolution of the phytochemical composition and a mean to define subtle differences in plant extract formulations.  相似文献   

15.
Dietary intake of quercetin is suggested to be potentially beneficial for the prevention of various diseases. We examined the effect of α-oligoglucosylation of the sugar moiety of quercetin monoglucoside on its bioavailability in humans. Enzymatically modified isoquercitrin (EMIQ) was prepared by enzymatic deglycosylation and the subsequent of α-oligoglucosylation of quercetin 3-O-β-rutinode (rutin). The plasma level of quercetin metabolites was instantly increased by oral intake of EMIQ and its absorption efficiency was significantly higher than that of isoquercitrin (quercetin 3-O-β-glucoside; Q3G), and rutin. The profile of plasma quercetin metabolites after EMIQ consumption did not differ from that after Q3G consumption. The apparent log P of EMIQ indicated that EMIQ is more hydrophilic than Q3G but less than quercetin 3,4′-O-β-diglucoside. These data indicated that enzymatic α-oligoglucosylation to the sugar moiety is effective for enhancing the bioavailability of quercetin glucosides in humans.  相似文献   

16.
From Verbascum sinuatum, besides aucubin, harpagide, 6-O-β-d-xylopyranosylaucubin and sinuatol (6-O- α-l-rhamnopyranosylaucubin), a new iridoid glycoside, sinuatoside, has been isolated and its structure elucidated as 6-O-(3-O-β-d-xylopyranosyl)α-d-galactopyranosyl aucubin on the basis of spectral data and chemical modifications. For the new disaccharide unit of the latter compound the name sinuatose is proposed.  相似文献   

17.
Chromatographic investigation of a methanolic extract of white lupin roots has revealed the presence of six new dihydrofuranoisoflavones (lupinisoflavones A-F). Three monoprenylated (3,3-dimethylallyl-substituted) isoflavones (wighteone, luteone and licoisoflavone A), two diprenylated isoflavones [6,3′-di(3,3-dimethylallyl)genistein (lupalbigenin) and 6,3′-di(3,3-dimethylallyl)-2′-hydroxygenistein (2′-hydroxylupalbigenin)] and two pyranoisoflavones (parvisoflavone B and licoisoflavone B) have also been isolated from the same source. In addition to genistein, leaf extracts of L. italbus contain 3′-O-methylorobol which is presumed to be the precursor of lupisoflavone [5,7,4′-trihydroxy-3′-methoxy-6-(3,3-dimethylallyl)isoflavone]. Probable biogenetic relationships between the prenylated, and dihydrofurano-and pyrano-substituted isoflavones in roots and leaves of L. albus are briefly discussed.  相似文献   

18.
The molecular complexation of triterpene glycosides α-hederin (hederagenin 3-O-α-L-rhamnopyranosyl-(l → 2)-O-α-L-arabinopyranoside), hederasaponin C (hederagenin 3-O-α-L-rhamnopyranosyl-(l → 2)-O-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl-(l → 4)-O-β-D-glucopyranosyl-(l → 6)-O-β-D-glucopyranoside), and glycyram (monoammonium glycyrrhizinate) with sildenafil citrate was investigated for the first time using electrospray ionization mass spectroscopy. The glycosides form a complex in a 1: 1 molar ratio. The influence of the complex on Avena sativa seeds germination and its ichthyotoxicity against Poecilia reticulata were studied.  相似文献   

19.
This paper describes the synthesis and antiproliferative activity of conjugates of genistein (1) and unsaturated pyranosides. Constructs linking genistein with a sugar moiety through an alkyl chain were obtained in a two-step synthesis: in a first step genistein was converted into an intermediate bearing an ??-hydroxyalkyl substituent, containing two, three or five carbon atoms, at position 7, while the second step involved Ferrier glycosylation reaction, employing glycals. Antiproliferative activity of several genistein derivatives was tested in cancer cell lines in vitro. The most potent derivative, Ram-3 inhibited the cell cycle, interacted with mitotic spindles and caused apoptotic cell death. Neither genistein nor the sugar alone were able to influence the mitotic spindle organization. Our results indicate, that conjugation of genistein with certain sugars may render the interaction of derivatives with new molecular targets.  相似文献   

20.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号